版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省乐山市峨眉山市第二中学高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.2.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.3.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-24.定义在区间上的函数的导函数的图象如图所示,则下列结论不正确的是()A.函数在区间上单调递增 B.函数在区间上单调递减C.函数在处取得极大值 D.函数在处取得极小值5.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为()A.40m B.63mC.m D.m6.在中国共产党建党100周年之际,广安市某中学组织了“党史知识竞赛”活动,已知该校共有高中学生1000人,用分层抽样的方法从该校高中学生中抽取一个容量为25的样本参加活动,其中高二年级抽取了8人,则该校高二年级学生人数为()A.960 B.720C.640 D.3207.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.8.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.9.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.10.设是可导函数,当,则()A.2 B.C. D.11.已知数列满足,其前项和为,,.若数列的前项和为,则满足成立的的最小值为()A.10 B.11C.12 D.1312.已知向量,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.14.在等比数列中,已知,则________15.若函数在处取得极小值,则a=__________16.圆的圆心坐标为___________;半径为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值18.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)设等差数列的各项均为整数,且满足对任意正整数,总存在正整数,使得,则称这样的数列具有性质(1)若数列的通项公式为,数列是否具有性质?并说明理由;(2)若,求出具有性质的数列公差的所有可能值;(3)对于给定的,具有性质的数列是有限个,还是可以无穷多个?(直接写出结论)20.(12分)在柯桥古镇的开发中,为保护古桥OA,规划在O的正东方向100m的C处向对岸AB建一座新桥,使新桥BC与河岸AB垂直,并设立一个以线段OA上一点M为圆心,与直线BC相切的圆形保护区(如图所示),且古桥两端O和A与圆上任意一点的距离都不小于50m,经测量,点A位于点O正南方向25m,,建立如图所示直角坐标系(1)求新桥BC的长度;(2)当OM多长时,圆形保护区的面积最小?21.(12分)已知数列是递增的等比数列,满足,(1)求数列的通项公式;(2)若,求数列的前n项和22.(10分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B2、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B3、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.4、C【解析】根据函数的单调性和函数的导数的值的正负的关系,可判断A,B的结论;根据函数的极值点和函数的导数的关系可判断、的结论【详解】函数在上,故函数在上单调递增,故正确;根据函数的导数图象,函数在时,,故函数在区间上单调递减,故正确;由A的分析可知函数在上单调递增,故不是函数的极值点,故错误;根据函数的单调性,在区间上单调递减,在上单调递增,故函数处取得极小值,故正确,故选:5、B【解析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.6、D【解析】由分层抽样各层成比例计算即可【详解】设高二年级学生人数为,则,解得故选:D7、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.8、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.9、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质10、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C11、A【解析】根据题意和对数的运算公式可证得为以2为首项,2为公比的等比数列,求出,进而得到,利用裂项相消法求得,再解不等式即可.【详解】由,又,所以数列是以2为首项,2为公比的等比数列,故,则,所以,由,得,即,有,又,所以,即n的最小值为10.故选:A12、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒14、2【解析】由等比数列的相关性质进行求解.【详解】由等比数列的相关性质得:故答案为:215、2【解析】对函数求导,根据极值点得到或,讨论的不同取值,利用导数的方法判定函数单调性,验证极值点,即可得解.【详解】由可得,因为函数在处取得极小值,所以,解得或,若,则,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极小值,符合题意;当时,,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极大值,不符合题意;综上:.故答案为:2.【点睛】思路点睛:已知函数极值点求参数时,一般需要先对函数求导,根据极值点求出参数,再验证所求参数是否符合题意即可.16、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点,连接交于,连接,,由平面几何得,再根据线面平行的判定可得证;(2)建立如图所示的空间直角坐标系,利用向量法即可得结果.【小问1详解】取的中点,连接交于,连接,在三棱柱中,为的中点,,为的中点,且,且,四边形为平行四边形,又平面,平面,平面;【小问2详解】平面,,平面,,,两两垂直,以为原点,,,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则即取,则,,又是平面的一个法向量,,故平面和平面夹角的余弦值为18、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余弦定理进行化简;当含有内角的正弦值及边的关系,且为一次式时,可考虑采用正弦定理进行边角互化.19、(1)数列具有性质,理由见解析;(2),;(3)有限个.【解析】(1)由题意,由性质定义,即可知是否具有性质.(2)由题设,存在,结合已知得且,则,由性质的定义只需保证为整数即可确定公差的所有可能值;(3)根据(2)的思路,可得且,由为整数,在为定值只需为整数,即可判断数列的个数是否有限.【小问1详解】由,对任意正整数,,说明仍为数列中的项,∴数列具有性质.【小问2详解】设的公差为.由条件知:,则,即,∴必有且,则,而此时对任意正整数,,又必一奇一偶,即为非负整数因此,只要为整数且,那么为中的一项.易知:可取,对应得到个满足条件的等差数列.【小问3详解】同(2)知:,则,∴必有且,则,故任意给定,公差均为有限个,∴具有性质的数列是有限个.【点睛】关键点点睛:根据性质的定义,在第2、3问中判断满足等差数列通项公式,结合各项均为整数,判断公差的个数是否有限即可.20、(1)80m;(2).【解析】(1)根据斜率的公式,结合解方程组法和两点间距离公式进行求解即可;(2)根据圆的切线性质进行求解即可.【小问1详解】由题意,可知,,∵∴直线BC方程:①,同理可得:直线AB方程:②由①②可知,∴,从而得故新桥BC得长度为80m【小问2详解】设,则,圆心,∵直线BC与圆M相切,∴半径,又因为,∵∴,所以当时,圆M的面积达到最小21、(1)(2)【解析】(1)由等比数列的通项公式计算基本量从而得出的通项公式;(2)由(1)可得,再由裂项相消法求和即可.【小问1详解】设等比数列的公比为q,所以有,,联立两式解得或又因为数列是递增的等比数列,所以,所以数列的通项公式为;【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 律师年度工作计划
- 律师事务所的实习报告范文10篇
- 客服主管工作计划15篇
- 高老头读后感1000字
- 初一教师教学工作计划5篇范文
- 乒乓球比赛作文600字锦集八篇
- 班长的辞职报告模板集合9篇
- (一)制定招聘战略-案例导入-江西人力资源网
- 2025年油炸类制品项目发展计划
- 健康管理咨询服务合同(2篇)
- 剑桥英语 中级班 听力脚本剑桥二
- 职工配偶未就业承诺书
- 质量认证基础知识(共218页).ppt
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 斜皮带机皮带跑偏调整方法ppt课件
- 《光学教程》[姚启钧]课后习题解答
- 供应室不良事件
- 中医院中药的饮片处方用名与调剂给付规定
- 钻孔灌注桩及后注浆施工方案施工方案
- 3D小白人透明底色PPT素材
- 基于MatlabSVPWM变频器仿真研究开题报告
评论
0/150
提交评论