北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题含解析_第1页
北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题含解析_第2页
北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题含解析_第3页
北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题含解析_第4页
北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市延庆区市级名校2023-2024学年高二上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是152.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.213.若离散型随机变量的所有可能取值为1,2,3,…,n,且取每一个值的概率相同,若,则n的值为()A.4 B.6C.9 D.104.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.5.已知圆的圆心在x轴上,半径为1,且过点,圆:,则圆,的公共弦长为A. B.C. D.26.若数列满足,则的值为()A.2 B.C. D.7.若双曲线的离心率为3,则的最小值为()A. B.1C. D.28.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.39.在四面体中,设,若F为BC的中点,P为EF的中点,则=()A. B.C. D.10.“且”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.函数,的值域为()A. B.C. D.12.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=0二、填空题:本题共4小题,每小题5分,共20分。13.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.14.已知函数,___________.15.已知四面体中,,分别在,上,且,,若,则________.16.过点,且周长最小的圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.18.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值19.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围20.(12分)已知椭圆的离心率为,且点在C上.(1)求椭圆C的标准方程;(2)设,为椭圆C的左,右焦点,过右焦点的直线l交椭圆C于A,B两点,若内切圆的半径为,求直线l的方程.21.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分22.(10分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D2、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D3、D【解析】根据分布列即可求出【详解】因为,所以故选:D4、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.5、A【解析】根据题意设圆方程为:,代点即可求出,进而求出方程,两圆方程做差即可求得公共弦所在直线方程,再利用垂径定理去求弦长.【详解】设圆的圆心为,则其标准方程为:,将点代入方程,解得,故方程为:,两圆,方程作差得其公共弦所在直线方程为:,圆心到该直线的距离为,因此公共弦长为,故选:A.【点睛】本题综合考查圆的方程及直线与圆,圆与圆位置关系,属于中档题.一般遇见直线与圆相交问题时,常利用垂径定理解决问题.6、C【解析】通过列举得到数列具有周期性,,所以.详解】,同理可得:,可得,则.故选:C.7、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.8、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.9、A【解析】作出图示,根据空间向量的加法运算法则,即可得答案.【详解】如图示:连接OF,因为P为EF中点,,F为BC的中点,则,故选:A10、B【解析】根据充分条件、必要条件的定义和椭圆的标椎方程,判断可得出结论.【详解】解:充分性:当,方程表示圆,充分性不成立;必要性:若方程表示椭圆,则,必有且,必要性成立,因此,“且”是“方程表示椭圆”的必要不充分条件.故选:B.11、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.12、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:14、【解析】直接利用分段函数的解析式即可求解.【详解】因为,所以,所以.故答案为:-115、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:16、【解析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.18、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为19、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即20、(1)(2)或.【解析】(1)根据离心率可得的关系,再将的坐标代入方程后可求,从而可得椭圆的方程.(2)设直线的方程为,,结合内切圆的半径为可得,联立直线方程和椭圆方程,消元后结合韦达定理可得关于的方程,求出其解后可得直线方程.【小问1详解】因为椭圆的离心率为,故可设,故椭圆方程为,代入得,故,故椭圆方程为:.【小问2详解】的周长为,故.设,由题设可得直线与轴不重合,故可设直线,则,由可得,整理得到,此时,故,解得,故直线的方程为:或.21、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论