版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市达标名校2023-2024学年数学高二上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.22.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支3.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.4.过点且平行于直线的直线方程为()A. B.C. D.5.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π6.已知向量,,且,则值是()A. B.C. D.7.已知角的终边经过点,则,的值分别为A., B.,C., D.,8.下列直线中,倾斜角最大的为()A. B.C. D.9.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要10.经过两点直线的倾斜角是()A. B.C. D.11.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.12.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______14.古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.15.设O为坐标原点,F为双曲线的焦点,过F的直线l与C的两条渐近线分别交于A,B两点.若,且的内切圆的半径为,则C的离心率为____________16.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数是定义在实数集上的奇函数,且当时,(1)求的解析式;(2)若在上恒成立,求的取值范围18.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.19.(12分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:20.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.21.(12分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值22.(10分)已知椭圆的左、右焦点分别是,,离心率为,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C方程;(2)设点P在直线上,过点P的两条直线分别交曲线C于A,B两点和M,N两点,且,求直线AB的斜率与直线MN的斜率之和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.2、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D3、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.4、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A5、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C6、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.7、C【解析】利用任意角的三角函数的定义:,,,代入计算即可得到答案【详解】由于角的终边经过点,则,,(为坐标原点),所以由任意角的三角函数的定义:,.故答案选C【点睛】本题考查任意角的三角函数的定义,解决此类问题的关键是掌握牢记三角函数定义并能够熟练应用,属于基础题8、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D9、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B10、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B11、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D12、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.14、①.②.【解析】建立空间直角坐标系,根据,可得对应的轨迹方程;先求的面积,其是固定值,要使体积最小,只需求点到平面的距离的最小值即可.【详解】分别以为轴建系,设,而,,,,.由,有,化简得对应的轨迹方程为.所以点P对应的轨迹的面积是.易得的三个边即是边长为为的等边三角形,其面积为,,设平面的一个法向量为,则有,可取平面的一个法向量为,根据点的轨迹,可设,,所以点到平面的距离,所以故答案为:;15、##【解析】,作出渐近线图像,由题可知的内切圆圆心在x轴上,过内心作OA和AB的垂线,可得几何关系,据此即可求解.【详解】双曲线渐近线OA与OB如图所示,OA与OB关于x轴对称,设△OAB的内切圆圆心为,则M在的平分线上,过点分别作于点于,由,则四边形为正方形,由焦点到渐近线的距离为得,又,∴,且,∴,∴,则.故答案为:.16、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)实数的取值范围是【解析】(1)根据函数奇偶性求解析式;(2)将恒成立转化为令,恒成立,讨论二次函数系数,结合根的分布.【详解】解:(1)因为函数是定义在实数集上的奇函数,所以,当时,则所以当时所以(2)因为时,在上恒成立等价于即在上恒成立令,则①当时,不恒成立,故舍去②当时必有,此时对称轴若即或时,恒成立因为,所以若即时,要使恒成立则有与矛盾,故舍去综上,实数的取值范围是【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于的方程(组),从而得到的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.18、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可化为,从而直线过定点.19、(1);(2)证明见解析.【解析】(1)设等差数列的公差为,则,根据题意可得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,利用裂项相消法求出,即可证得结论成立.【小问1详解】解:设等差数列的公差为,则,由题意可得,即,整理可得,,解得,因此,.【小问2详解】证明:,因此,,故原不等式得证.20、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形21、(1)单调递增区间是和,单调递减是;(2)函数的最大值是,函数的最小值是.【解析】(1)利用导数和函数单调性关系,求函数的单调区间;(2)利用函数的单调性,列表求函数的最值.【小问1详解】,当,解得:或,所以函数的单调递增区间是和,当,解得:,所以函数的单调递减区间是,所以函数的单调递增区间是和,单调递减是;【小问2详解】由(1)可得下表4单调递增单调递减单调递增所以函数的最大值是,函数的最小值是22、(1)(2)0【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省南平市顺昌县建西中学2021-2022学年高三语文月考试题含解析
- 部编版六年级语文上册习作《-让生活更美好》教学课件
- 土地置换协议书(2篇)
- 城乡环境合同(2篇)
- 潍坊市供热管理办法:应急预案篇
- 技术支持安保人员聘用合同范例
- 第五章-农产品技术标准与标准化
- 情景剧编剧创作劳务合同
- 水上乐园电动游乐设施安装合同
- 钢铁企业会计财会聘用合同
- 2025新北师大版英语七年级下单词表
- 校长在2024-2025年秋季第一学期期末教师大会上的讲话
- 班级管理方法及措施
- 2024年道路运输安全生产管理制度样本(3篇)
- DB11-T 693-2024 施工现场临建房屋应用技术标准
- 2024年北京市家庭教育需求及发展趋势白皮书
- GB/T 45089-20240~3岁婴幼儿居家照护服务规范
- 股权原值证明-文书模板
- 中国近代史纲要中国计量大学现代科技学院练习题复习资料
- 2024-2025学年上学期重庆四年级英语期末培优卷3
- 浙江省杭州市八县区2024-2025学年高二数学上学期期末学业水平测试试题
评论
0/150
提交评论