版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市首都师大附属回龙观育新学校2023-2024学年高二数学第一学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.12.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或3.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.4.设函数,,,则()A. B.C. D.5.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或16.若且,则下列不等式中一定成立的是()A. B.C. D.7.下列命题中正确的是A.命题“若,则”的否命题为:“若,则”B.若命题,是假命题,则实数C.“”的一个充分不必要条件是“”D.命题“若,则”的逆否命题为真命题8.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.9.已知直线,若圆C的圆心在轴上,且圆C与直线都相切,求圆C的半径()A. B.C.或 D.10.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.11.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则12.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.26二、填空题:本题共4小题,每小题5分,共20分。13.两姐妹同时推销某一商品,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如图所示,已知妹妹的销售量的平均数为14,姐姐的销售量的中位数比妹妹的销售量的众数大2,则的值为______.14.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________15.函数的导函数___________.16.若,满足不等式组,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)18.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.19.(12分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.20.(12分)已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.21.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围22.(10分)已知等差数列的前n项和为,等比数列的前n项和为,且,,(1)求,;(2)已知,,试比较,的大小
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题2、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.3、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C4、A【解析】根据导数得出在的单调性,进而由单调性得出大小关系.【详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A5、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.6、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.7、C【解析】.命题的否定是同时否定条件和结论;.将当成真命题解出的范围,再取补集即可;.求出“”的充要条件再判断即可;.判断原命题的真假即可【详解】解:对于A:命题“若,则”的否命题为:“若,则“,故A错误;对于B:当命题,是真命题时,,所以,又因为命题为假命题,所以,故B错误;对于C:由“”解得:,故“”是“”的充分不必要条件,故C正确;对于D:因为命题“若,则”是假命题,所以其逆否命题也是假命题,故D错误;故选:C8、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.9、C【解析】设出圆心坐标,利用圆心到直线的距离相等列方程,求得圆心坐标并求得圆的半径.【详解】设圆心坐标为,则或,所以圆的半径为或.故选:C10、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D11、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C12、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】先根据妹妹的销售量的平均数为14,求得y,进而得到其众数,然后再根据姐姐的销售量的中位数比妹妹的销售量的众数大2,得到姐姐的销售量的中位数.【详解】因为妹妹的销售量的平均数为14,所以,解得,由茎叶图知:妹妹的销售量的众数是14,因为姐姐的销售量的中位数比妹妹的销售量的众数大2,所以姐姐的销售量的中位数是16,所以,解得,所以,故答案为:1314、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:15、【解析】利用导函数的乘法公式和复合函数求导法则进行求解【详解】故答案为:16、10【解析】作出不等式区域,如图所示:目标最大值,即为平移直线的最大纵截距,当直线经过点时最大为10.故答案为10.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、每年至少要还6.17万元.【解析】根据贷款总额和还款总额相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【详解】50万元10年产生本息和与每年还x万元的本息和相等,故有购房款50万元十年的本息和:50(1+4%)10,每年还x万元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,从而有50(1+4%)10=,解得x≈6.17,即每年至少要还6.17万元.18、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.19、(1),(2)【解析】(1)根据分式的合分比性质以及等差数列的性质即可求出;(2)根据裂项相消法即可求出【小问1详解】由题意:,即,又∵,∴,∴,∴,.【小问2详解】因为,∴.20、(1)证明见解析;(2)在线段上存在一点,且P是靠近C的四等分点.【解析】(1)连接,根据给定条件证明平面得即可推理作答.(2)在平面内过C作,再以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,利用空间向量计算判断作答.【小问1详解】在三棱柱中,四边形是平行四边形,而,则是菱形,连接,如图,则有,因,,平面,于是得平面,而平面,则,由得,,平面,从而得平面,又平面,所以平面平面.【小问2详解】在平面内过C作,由(1)知平面平面,平面平面,则平面,以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,如图,因,,则,假设在线段上存在符合要求的点P,设其坐标为,则有,设平面的一个法向量,则有,令得,而平面的一个法向量,依题意,,化简整理得:而,解得,所以在线段上存在一点,且P是靠近C的四等分点,使平面和平面所成角的余弦值为.21、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省南平市顺昌县建西中学2021-2022学年高三语文月考试题含解析
- 部编版六年级语文上册习作《-让生活更美好》教学课件
- 土地置换协议书(2篇)
- 城乡环境合同(2篇)
- 潍坊市供热管理办法:应急预案篇
- 技术支持安保人员聘用合同范例
- 第五章-农产品技术标准与标准化
- 情景剧编剧创作劳务合同
- 水上乐园电动游乐设施安装合同
- 钢铁企业会计财会聘用合同
- GB/T 18916.15-2024工业用水定额第15部分:白酒
- 部编四年级道德与法治下册全册教案(含反思)
- 工程伦理(2024东莞理工)学习通超星期末考试答案章节答案2024年
- 2024年湖北三江航天江河化工科技限公司招聘高频500题难、易错点模拟试题附带答案详解
- 体育场馆运营管理与服务标准规范
- 夜市食品安全管理制度
- 网络设备驻场运维服务方案
- 代办车辆过户合同模板
- 河南省安阳市八年级下学期期末测试英语试题(原卷版)
- 人教版六年级语文上册期末考试卷(完整版)
- 美的稳健增长法阅读札记
评论
0/150
提交评论