2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题含解析_第1页
2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题含解析_第2页
2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题含解析_第3页
2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题含解析_第4页
2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省会曲靖市会泽县第一中学高二上数学期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线经过两点,那么其斜率为()A. B.C. D.2.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.3.已知空间向量,,则()A. B.19C.17 D.4.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.5.若,,且,则()A. B.C. D.6.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种7.已知离散型随机变量X的分布列如下:X123P则数学期望()A. B.C.1 D.28.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.9.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为()A.100 B.C.300 D.40010.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.11.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则12.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与圆:交于、两点,则的面积为______.14.数列的前项和为,则_________________.15.半径为的球的表面积为_______16.某工厂的某种型号的机器的使用年限和所支出的维修费用(万元)有下表的统计资料:23456223.85.56.57.0根据上表可得回归直线方程,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,且成等比数列(1)求的值和的通项公式;(2)设,求数列的前项和18.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.19.(12分).在直角坐标系中,点,直线的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于A,B两点(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求值20.(12分)已知圆,点.(1)若,半径为的圆过点,且与圆相外切,求圆的方程;(2)若过点的两条直线被圆截得的弦长均为,且与轴分别交于点、,,求.21.(12分)如图,四棱锥中,,,,平面.(1)在线段上是否存在一点使得平面?若存在,求出的位置;若不存在,请说明理由;(2)求四棱锥的体积.22.(10分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B2、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A3、D【解析】先求出的坐标,再求出其模【详解】因为,,所以,故,故选:D.4、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.5、A【解析】由于对数函数的存在,故需要对进行放缩,结合(需证明),可放缩为,利用等号成立可求出,进而得解.【详解】令,,故在上单调递减,在上单调递增,,故,即,当且仅当,等号成立.所以,当且仅当时,等号成立,又,所以,即,所以,又,所以,,故故选:A6、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D7、D【解析】利用已知条件,结合期望公式求解即可【详解】解:由题意可知:故选:D8、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.9、B【解析】根据圆台的体积等于两个圆锥的体积之差,即可求出【详解】设大圆锥的高为,所以,解得故故选:B【点睛】本题主要考查圆台体积的求法以及数学在生活中的应用,属于基础题10、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.11、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.12、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】用已知直线方程和圆方程联立,可以求出交点,再分析三角形的形状,即可求出三角形的面积.【详解】由圆C方程:可得:;即圆心C的坐标为(0,-1),半径r=2;联立方程得交点,如下图:可知轴,∴是以为直角的直角三角形,,故答案为:2.14、【解析】利用计算可得出数列的通项公式.【详解】当时,;而不适合上式,.故答案:.15、.【解析】由球的表面积公式计算【详解】由题意.故答案为:16、08##【解析】根据表格中的数据求出,将点代入回归直线求出即可.【详解】由表格可得,,由于回归直线过点,故,解得,故答案为:0.08.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2)【解析】(1)由于,所以可得,再由成等比数列,列方程可求出,从而可求出的通项公式;(2)由(1)可得,然后利用错位相减法求【详解】解:(1)数列{an}满足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比数列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇数时,an=n,n为偶数时,an=n﹣1所以数列{an}的通项公式为(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2•(2n﹣1)2]+22n﹣2•(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2•[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2•(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以18、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.19、(1)曲线的直角坐标方程为,直线的普通方程为;(2).【解析】(1)根据极坐标与直角坐标互化公式,结合加法消元法进行求解即可;(2)利用直线参数方程的意义,结合一元二次方程根与系数关系进行求解即可.小问1详解】由;;【小问2详解】把直线的参数方程代入曲线的直角坐标方程中,得,,因为在直线上,所以,或而,所以.20、(1)或(2)【解析】(1)设圆心,根据已知条件可得出关于、的方程组,解出、的值,即可得出圆的方程;(2)分析可知直线、的斜率存在,设过点且斜率存在的直线的方程为,即,利用勾股定理可得出,可知直线、的斜率、是关于的二次方程的两根,求出、的坐标,结合韦达定理可求得的值.【小问1详解】解:设圆心,圆的圆心为,由题意可得,解得或,因此,圆的方程为或.【小问2详解】解:若过点的直线斜率不存在,则该直线的方程为,圆心到直线的距离为,不合乎题意.设过点且斜率存在的直线的方程为,即,由题意可得,整理可得,设直线、的斜率分别为、,则、为关于的二次方程的两根,,由韦达定理可得,,在直线的方程中,令,可得,即点在直线的方程中,令,可得,即点,所以,,解得.21、(1)存在,为的中点,证明见解析;(2).【解析】(1)取的中点,的中点,连接,,,证明,由线面平行的判定定理即可求证;(2)先证明平面面,过点作于点,即可证明面,在中,利用面积公式求出即为四棱锥的高,再由棱锥的体积公式即可求解.【详解】(1)线段上存在点使得平面,为的中点.证明如下:如图取的中点,的中点,连接,,,因为,分别为,的中点,所以且因为且,所以,且,所以四边形为平行四边形,可得,因为面,面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论