版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届全国普通高等学校高二数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.22.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.3.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A.13 B.14C.15 D.164.已知平面的一个法向量为=(2,-2,4),=(-1,1,-2),则AB所在直线l与平面的位置关系为()A.l⊥ B.C.l与相交但不垂直 D.l∥5.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是156.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.观察:则第行的值为()A. B.C. D.9.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面10.已知点,分别在双曲线的左右两支上,且关于原点对称,的左焦点为,直线与的左支相交于另一点,若,且,则的离心率为()A B.C. D.11.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)12.已知数列为等比数列,若,,则的值为()A.8 B.C.16 D.±16二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的前n项和分别为,若对任意正整数n都有,则的值为___________.14.如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15.直线的倾斜角的大小是_________.16.已知抛物线的焦点为,点在上,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.18.(12分)已知椭圆()的离心率为,一个焦点为.(1)求椭圆的方程;(2)设为原点,直线()与椭圆交于不同的两点,且与x轴交于点,为线段的中点,点关于轴的对称点为.证明:是等腰直角三角形.19.(12分)已知直线,以点为圆心的圆C与直线l相切(1)求圆C的标方程;(2)过点的直线交圆C于A,B两点,且,求的方程20.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值21.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.22.(10分)如图,在长方体中,,.点E在上,且(1)求证:平面;(2)求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.2、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.3、C【解析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了天,然后建立关于的方程,求出即可【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了天,则,解得或(舍去),所以,故选:4、A【解析】由向量与平面法向量的关系判断直线与平面的位置关系【详解】因为,所以,所以故选:A5、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D6、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B7、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.8、B【解析】根据数阵可知第行为,利用等差数列求和,即可得到答案;【详解】根据数阵可知第行为,,故选:B9、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.10、D【解析】根据双曲线的定义及,,应用勾股定理,可得关系,即可求解.【详解】设双曲线的右焦点为,连接,,,如图:根据双曲线的对称性及可知,四边形为矩形.设因为,所以,又,所以,,在和中,,①,②由②化简可得,③把③代入①可得:,所以,故选:D【点睛】本题主要考查了双曲线的定义,双曲线的简单几何性质,勾股定理,属于难题.11、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.12、A【解析】利用等比数列的通项公式即可求解.【详解】因为为等比数列,设的公比为,则,,两式相除可得,所以,所以,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##0.68【解析】利用等差数列求和公式与等差中项进行求解.【详解】由题意得:,同理可得:,所以故答案为:14、【解析】设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,求出线段的垂直平分线方程,可求得点的横坐标,利用不等式的基本性质可求得点的横坐标的取值范围.【详解】设直线的方程为,联立,整理可得,因为直线过椭圆的左焦点,所以方程有两个不相等的实根设点、,设的中点为,则,,直线的垂直平分线的方程为,令,则.因为,所以故点的横坐标的取值范围.故答案为:15、【解析】由题意,即,∴考点:直线的倾斜角.16、【解析】由抛物线的焦半径公式可求得的值.【详解】抛物线的准线方程为,由抛物线的焦半径公式可得,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)根据平行关系得到切线斜率,进而得到导函数在处的函数值,列出方程,求出,进而得到函数解析式;(2)先由求出,再利用导函数求单调性和最值.【小问1详解】,.由题意得:,解得:.,【小问2详解】,则,解得,,,当,解得:,即函数在单调递减,当,解得:或,即函数分别在,递增.又,,,,,.18、(1)(2)证明见解析.【解析】(1)由题知,进而结合求解即可得答案;(2)设点,,进而联立并结合题意得或,进而结合韦达定理得,再的中点为,证明,进而得,,故,综合即可得证明.【小问1详解】解:因为椭圆的离心率为,一个焦点为所以,所以所以椭圆的方程为.【小问2详解】解:设点,则点,所以联立方程得,所以有,解得,因为,故或设,所以设向量,所以,所以,即,设的中点为,则所以,又因为,所以,所以,因为点关于轴的对称点为.所以,所以,所以是等腰直角三角形.19、(1)(2)或【解析】(1)根据点到直线的距离公式求出半径,即可得到圆C的标方程;(2)根据弦长公式可求出圆心C到直线的距离,再根据点到直线的距离公式结合分类讨论思想即可求出【小问1详解】设圆C的半径为r,∵C与l相切,∴,∴圆C的标准方程为【小问2详解】由可得圆心C到直线的距离∴当的斜率不存在时,其方程为,此时圆心到的距离为3,符合条件;当的斜率存在时,设,圆心C到直线的距离,解得,此时的方程为,即综上,的方程为或20、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为21、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电动升降桌系统课程设计
- 电气工程课程设计论文
- 成都中医药大学《中国现当代文学(一)》2021-2022学年第一学期期末试卷
- 成都中医药大学《电子商务》2022-2023学年第一学期期末试卷
- 初中七年级主题班会:如何养成良好的学习习惯(课件)
- 简单个人水库养殖承包合同(3篇)
- 设备部年终总结15篇
- 设计活动方案(32篇)
- K284-6111-生命科学试剂-MCE
- 搅拌桩工程施工组织设计方案
- 税负计算表(增值税)
- 2017年8月11日公安部遴选公务员面试真题及答案解析
- 2021年骨科规培考试试卷含答案
- 从美国投顾业务及头部公司特点看国内基金投顾业务发展
- 湘少版五年级上册英语阅读理解专项精选练习
- 01511现代管理实务 自考重点
- DB22∕T 2646.1-2017 吉林省水利工程定额 第1部分:工程设计概(估)算编制规定
- 【人才评估】如何绘制人才画像
- 山东省安氏宗亲分布村落
- yesterday-once-more-歌曲赏析
- 林业局低效林改造工程施工组织设计
评论
0/150
提交评论