2024届山东省潍坊市普通高中数学高二上期末检测试题含解析_第1页
2024届山东省潍坊市普通高中数学高二上期末检测试题含解析_第2页
2024届山东省潍坊市普通高中数学高二上期末检测试题含解析_第3页
2024届山东省潍坊市普通高中数学高二上期末检测试题含解析_第4页
2024届山东省潍坊市普通高中数学高二上期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省潍坊市普通高中数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,,则数列的通项公式为()A. B.C. D.2.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.3.甲、乙、丙、丁四位同学一起去找老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙、丁可以知道对方的成绩C.乙可以知道四人的成绩 D.丁可以知道四人的成绩4.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.5.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.6.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上7.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.8.从直线上动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是()A. B.C. D.9.函数,的值域为()A. B.C. D.10.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.011.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.12.已知全集,,()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.底面半径为1,母线长为2的圆锥的体积为______14.已知直线与,若,则实数a的值为______15.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________16.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.18.(12分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.19.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长20.(12分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.21.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.22.(10分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B2、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.3、A【解析】分析可知乙、丙的成绩中必有位优秀、位良好,结合题意进行推导,可得出结论.【详解】由于个人中的成绩中有位优秀,位良好,甲知道乙、丙的成绩,还是不知道自己的成绩,则乙、丙的成绩必有位优秀、位良好,甲、丁的成绩中必有位优秀、位良好,因为给乙看丙的成绩,则乙必然知道自己的成绩,丁知道甲的成绩后,必然知道自己的成绩.故选:A.4、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C5、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B6、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力7、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).8、B【解析】分析可知当时,最大,计算出、,进而可计算得出四边形(为坐标原点)面积.【详解】圆的圆心为坐标原点,连接、、,则,设,则,,则,当取最小值时,,此时,,,,故,此时,.故选:B.9、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.10、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B11、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.12、C【解析】根据条件可得,则,结合条件即可得答案.【详解】因,所以,则,又,所以,即.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由勾股定理求圆锥的高,再结合圆锥的体积公式运算即可得解.【详解】解:设圆锥的高为,由勾股定理可得,由圆锥的体积可得,故答案为.【点睛】本题考查了圆锥的体积公式,重点考查了勾股定理,属基础题.14、【解析】由可得,从而可求出实数a的值【详解】因为直线与,且,所以,解得,故答案:15、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.16、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:32三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用抛物线点,n)到焦点的距离等于到x轴的距离求出,从而得到抛物线的标准方程(2)联立直线与抛物线方程,通过韦达定理求出直线方程,然后由,即可求解【小问1详解】由题意可得,故抛物线方程为;【小问2详解】设,,,,直线的方程为,联立方程中,消去得,,则,又,解得或(舍去),直线方程为,直线过定点18、(1)证明见解析;(2).【解析】(1)利用线面垂直的判定定理及性质即证;(2)利用坐标法,结合条件可求,然后利用体积公式即求.【小问1详解】,是的中点,,平面,平面,,又,平面,平面,;【小问2详解】,,,取的中点,连接,则,平面,以为坐标原点,分别以、、所在直线为、、轴建立空间直角坐标系,设,则,,,,,,,,设平面的一个法向量为,由,取,得;设平面的一个法向量为,由,取,得,∵二面角的大小为,,解得,,则三棱锥的体积.19、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.20、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,则由,由体积法可得答案.(2)由(1)连接,可得则从而平面,过点作交于点,连接,可证明平面平面,从而可得出答案.【小问1详解】由,,为中点,则由平面,平面,则又,且,则平面又,则平面,且都在平面内所以所以,取的中点,连接,则,所以,所以所以所以则设点到平面的距离为,则由即,即【小问2详解】线段上是否存在一点,使平面.由(1)连接,则四边形为平行四边形,则过点作交于,则为中点,则为的中点,即又平面,则平面过点作交于点,连接,则,即又平面,所以平面又,所以平面平面又平面,所以平面所以线段上存在一点,当时,平面.21、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.22、(1);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论