2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题含解析_第1页
2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题含解析_第2页
2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题含解析_第3页
2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题含解析_第4页
2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁市任城区高二数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件2.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.3.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.4.已知,,若,则实数()A. B.C.2 D.5.某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A. B.C. D.6.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.7.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于9.已知实数满足方程,则的最大值为()A.3 B.2C. D.10.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为,在逆水中的速度为,则游船此次行程的平均速度V与的大小关系是()A. B.C. D.12.在中,内角的对边分别为,若,则角为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人下棋,甲获胜的概率为,乙获胜的概率为,则甲、乙两人下成和棋的概率为___________.14.已知等差数列的公差为1,且是和的等比中项,则前10项的和为___________.15.已知正项等比数列的前n项和为,且,则的最小值为_________16.若分别是平面的法向量,且,,,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.18.(12分)已知圆的半径为,圆心在直线上,点在圆上.(1)求圆的标准方程;(2)若原点在圆内,求过点且与圆相切的直线方程.19.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.20.(12分)某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率21.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP22.(10分)如图,在空间四边形中,分别是的中点,分别是上的点,满足.(1)求证:四点共面;(2)设与交于点,求证:三点共线.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.2、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决3、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B4、D【解析】根据给定条件利用空间向量平行的坐标表示计算作答.【详解】因,,又,则,解得,所以实数.故选:D5、D【解析】利用抽样的性质求解【详解】所有学生数为,所以所求概率为.故选:D6、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.7、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.8、D【解析】由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论9、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.10、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.11、A【解析】求出平均速度V,进而结合基本不等式求得答案.【详解】易知,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为,逆流而上的时间为,则平均速度,由基本不等式可得,而,当且仅当时,两个不等式都取得“=”,而根据题意,于是.故选:A.12、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】直接根据概率和为1计算得到答案.【详解】.故答案为:.14、【解析】利用等比中项及等差数列通项公式求出首项,再利用等差数列的前项和公式求出前10项的和.【详解】设等差数列的首项为,由已知条件得,即,,解得,则.故答案为:.15、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:1616、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.18、(1)或(2)或【解析】(1)先设出圆的标准方程,利用点在圆上和圆心在直线上得到圆心坐标的方程组,进而求出圆的标准方程;(2)先利用原点在圆内求出圆的方程,设出切线方程,利用圆心到切线的距离等于半径进行求解.【小问1详解】解:设圆的标准方程为,由已知得,解得或,故圆的方程为或.【小问2详解】解:因为,,且原点在圆内,故圆的方程为,则圆心为,半径为,设切线为,即,则,解得或,故切线为或,即或即为所求.19、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.20、(1)6人;(2)75%;(3).【解析】(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人)(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率是,于是,可以估计这次考试化学学科及格率约为75%(3)由(1)知,“成绩低于50分”的人数是6人,成绩在这组的人数是(人),所以从成绩不及格的学生中随机调查1人,有15种选法,成绩低于50分有6种选法,故所求概率为21、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论