




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省豫南九校高二上数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线被圆所截得的弦长为()A. B.C. D.2.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.3.已知椭圆的离心率为,则()A. B.C. D.4.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.45.设集合,,则()A. B.C. D.6.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球7.等比数列的前项和为,若,则()A. B.8C.1或 D.或8.已知等比数列,且,则()A.16 B.32C.24 D.649.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.10.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.911.函数f(x)=的图象大致形状是()A. B.C. D.12.数列中,,,则()A.32 B.62C.63 D.64二、填空题:本题共4小题,每小题5分,共20分。13.如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.14.千年一遇对称日,万事圆满在今朝,年月日又是一个难得的“世界完全对称日”(公历纪年日期中数字左右完全对称的日期).数学上把这样的对称自然数叫回文数,两位数的回文数共有个(),其中末位是奇数的又叫做回文奇数,则在内的回文奇数的个数为___15.在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______16.在中,内角,,的对边分别为,,,若,且,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.18.(12分)已知圆:与x轴负半轴交于点A,过A的直线交抛物线于B,C两点,且.(1)证明:点C的横坐标为定值;(2)若点C在圆内,且过点C与垂直的直线与圆交于D,E两点,求四边形ADBE的面积的最大值.19.(12分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.20.(12分)圆过点A(1,-2),B(-1,4),求:(1)周长最小的圆的方程;(2)圆心在直线2x-y-4=0上的圆的方程21.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.22.(10分)某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.2、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.3、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D4、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.5、C【解析】根据集合交集和补集的概念及运算,即可求解.【详解】由题意,集合,,根据补集的运算,可得,所以.故选:C.6、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C7、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.8、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A9、D【解析】利用空间向量的加法与减法可得出关于、、的表达式.【详解】.故选:D.10、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D11、B【解析】利用函数的奇偶性排除选项A,C,然后利用特殊值判断即可【详解】解:由题得函数的定义域为,关于原点对称.所以函数是奇函数,排除选项A,C.当时,,排除选项D,故选:B12、C【解析】把化成,故可得为等比数列,从而得到的值.【详解】数列中,,故,因为,故,故,所以,所以为等比数列,公比为,首项为.所以即,故,故选C.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),常见的递推关系和变形方法如下:(1),取倒数变形为;(2),变形为,也可以变形为;二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由条件可得均为等腰直角三角形,从而,先证明平面,从而,即得到为平面与平面夹角的平面角,从而可求解.【详解】由,则,则在直三棱柱中,平面,又平面,则又,所以平面平面,所以由由条件可得均为等腰直角三角形,则所以,即,由所以平面,又平面所以,即为平面与平面夹角的平面角.在直角中,所以故答案为:14、【解析】根据分类加法计数原理,结合题中定义、组合的定义进行求解即可.【详解】两位数的回文奇数有,共个,三位数的回文奇数有,四位数的回文奇数有,所以在内的回文奇数的个数为,故答案为:15、4##【解析】根据正态分布曲线的对称性求解【详解】因为ξ服从正态分布(),即正态分布曲线的对称轴为,根据正态分布曲线的对称性,可知ξ在与取值的概率相同,所以ξ在内取值的概率为0.4.故答案为:0.416、【解析】代入,展开整理得,①化为,与①式相加得,转化为关于的方程,求解即可得出结论.【详解】因为,所以,所以,因为,所以,则,整理得,解得.故答案为:.【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得18、(1)证明见解析(2)【解析】(1)设直线方程,与抛物线方程联立,设,,结合,得到,结合根与系数的关系,即可解得答案;(2)根据(1)所设,表示出弦长,再求出,进而表示出四边形ADBE的面积,据此求其最大值,【小问1详解】由题意知点的坐标为,易知直线的斜率存在且不为零,设直线:,,,联立,得,则,即,由韦达定理得,由,即,得,即,代入,得或,又抛物线开口向右,,所以点的横坐标为定值.【小问2详解】由(1)知点的坐标为,故,由(1)知点的坐标为,由点在圆内,得,解得,又,得的斜率,故的方程为,即,故圆心到直线的距离为,由垂径定理得,故,(),当且仅当时,有最大值,所以四边形的面积的最大值为.19、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别为、的中点,所以,又平面平面所以平面(2)由菱形的面积为,,易得菱形边长为,取中点,连接,因为,所以,以点为原点,以方向为轴,方向为轴,方向为轴,建立如图所示坐标系.则所以设平面的法向量,由得,令,则所以一个法向量,因为,,所以平面PAD,所以平面的一个法向量所以,又二面角为锐二面角,所以二面角的余弦值为【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.20、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根据当AB为直径时,过A,B的圆的半径最小进行求解即可;(2)根据垂径定理,通过解方程组求出圆心坐标,进而可以求出圆的方程.【详解】解:(1)当AB为直径时,过A,B的圆的半径最小,从而周长最小,即AB中点(0,1)为圆心,半径r=|AB|=.故圆的方程为x2+(y-1)2=10;(2)由于AB的斜率为k=-3,则AB的垂直平分线的斜率为,AB的垂直平分线的方程是y-1=x,即x-3y+3=0.由解得即圆心坐标是C(3,2)又r=|AC|==2.所以圆的方程是(x-3)2+(y-2)2=20.21、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借用押金合同范本
- 加工砂石合同范本
- 前期物业委托服务合同范本
- 医院护士聘用合同范本
- 口罩出口合同范例
- 农庄基地出租合同范本
- 电费电价知识培训课件
- 前期光伏合同范本
- 劳务合同范本200字
- 代偿债务合同范本
- 生物氧化 Biological Oxidation课件
- 电力拖动自动控制系统-运动控制系统(第5版)习题答案
- 赣美版四年级美术下册全册课件汇总
- 工会专业知识考试题库
- 2023年山东水利职业学院单招综合素质考试笔试题库及答案解析
- 小学数学最新人教版三年级下册第一单元《位置与方向(一)》单元测试题(答案解析)
- 《英语阅读4》课程教案(下)
- 大班数学活动有趣的钟表
- 剪映入门教程PPT
- 外研版一起五年级英语下册全册教案教学设计版
- 回字格+米字格练字模版(A4最大利用率)
评论
0/150
提交评论