2024届贵阳市第二实验中学高二上数学期末考试试题含解析_第1页
2024届贵阳市第二实验中学高二上数学期末考试试题含解析_第2页
2024届贵阳市第二实验中学高二上数学期末考试试题含解析_第3页
2024届贵阳市第二实验中学高二上数学期末考试试题含解析_第4页
2024届贵阳市第二实验中学高二上数学期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵阳市第二实验中学高二上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,”的否定形式是()A., B.,C., D.,2.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.23.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.4.椭圆的短轴长为()A.8 B.2C.4 D.5.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.20226.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为A. B.C. D.7.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.88.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.9.双曲线的焦点到渐近线的距离为()A. B.2C. D.10.圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A. B.C. D.11.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.3212.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.二、填空题:本题共4小题,每小题5分,共20分。13.直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.14.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)15.若直线l经过A(2,1),B(1,)两点,则l的斜率取值范围为_________________;其倾斜角的取值范围为_________________.16.已知平面向量均为非零向量,且满足,记向量在向量上投影向量为,则k=______.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:,右焦点为F(,0),且离心率为(1)求椭圆C的标准方程;(2)设M,N是椭圆C上不同的两点,且直线MN与圆O:相切,若T为弦MN的中点,求|OT||MN|的取值范围18.(12分)如图,在三棱锥中,,点P为线段MC上的点(1)若平面PAB,试确定点P的位置,并说明理由;(2)若,,,求三棱锥的体积19.(12分)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱锥S-ABCD的侧面积;(2)求平面SCD与平面SAB的夹角的余弦值.20.(12分)已知一张纸上画有半径为4的圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.21.(12分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围22.(10分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】特称命题的否定是全称命题【详解】的否定形式是故选:A2、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A3、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题4、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.5、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A6、A【解析】若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质7、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.8、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.9、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A10、A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.11、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C12、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线方程求出焦点坐标与准线方程,设直线为,、,即可得到的坐标,再联立直线与抛物线方程,消元列出韦达定理,表示出、的坐标,根据得到方程,求出,即可得解;【详解】解:抛物线方程为,则焦点,准线为,设直线为,、,则,由,消去得,所以,,则,,因为,所以,所以,所以,解得,所以,即直线为,所以直线的斜率为;故答案为:14、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①15、①.②.【解析】根据直线l经过A(2,1),B(1,)两点,利用斜率公式,结合二次函数性质求解;设其倾斜角为,,利用正切函数的性质求解.【详解】因为直线l经过A(2,1),B(1,)两点,所以l的斜率为,所以l的斜率取值范围为,设其倾斜角为,,则,所以其倾斜角的取值范围为,故答案为:,16、##1.5【解析】由两边平方可得,,,设,向量是以向量为邻边的平行四边形、有共同起点的对角线,,由余弦定理可得,向量在向量上投影向量为,化简可得答案.【详解】因为,所以,,两边平方整理得,,两边平方整理得,即,可得,,设,所以向量是以向量为邻边的平行四边形、有共同起点的对角线,如图,即,因为,,平行四边形即为的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)[,3].【解析】(1)由题可得,即求;(2)当直线的斜率不存在或为0,易求,当直线MN斜率存在且不为0时,设直线MN的方程为:,利用直线与圆相切可得,再联立椭圆方程并应用韦达定理求得,然后利用基本不等式即得.【小问1详解】由题可得,∴𝑎=2,𝑏=∴椭圆C的方程为:;小问2详解】当直线MN斜率为0时,不妨取直线MN为𝑦=,则,此时,则;当直线MN斜率不存在,不妨取直线MN为x=,则,此时,则;当直线MN斜率存在且不为0时,设直线MN的方程为:,,因为直线MN与圆相切,所以,即,又因为直线MN与椭圆C交于M,N两点:由,得,则,所以MN中点T坐标为,则,,所以又,当且仅当,即取等号,∴|OT||MN|;综上所述:|OT|∙|MN|的取值范围为[,3].18、(1)点P为MC中点,理由见解析(2)【解析】(1)根据平面PAB,得到线线垂直,再得到点P的位置;(2)根据平面PAB,将问题转化为计算即可.【小问1详解】∵平面PAB,平面ABP,∴又∵在中,,∴P为MC中点.∴若平面PAB,则点P为MC中点【小问2详解】当P为中点时,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱锥的体积为19、(1)(2)【解析】(1)根据垂直关系依次求解每个侧面三角形边长和面积即可得解;(2)建立空间直角坐标系,利用向量法求解.小问1详解】由题可得:,则,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交线,所以BC⊥平面SAB,BC⊥BS,,所以四棱锥的侧面积【小问2详解】以A为原点,建立空间直角坐标系如图所示:设平面SCD的法向量,,取所以取为平面SAB的的法向量所以平面SCD与平面SAB的夹角的余弦值.20、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是21、(1)(2)【解析】(1)根据幂函数的定义和单调性求解;(2)利用根式函数的定义域和值域求得集合A,B,再由是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论