2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题含解析_第1页
2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题含解析_第2页
2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题含解析_第3页
2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题含解析_第4页
2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省中山市一中丰山学部数学高二上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.2.如图,在正方体中,点,分别是面对角线与的中点,若,,,则()A. B.C. D.3.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.84.已知直线过点且与直线平行,则直线方程为()A. B.C. D.5.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为6.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.97.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1008.已知命题:若直线的方向向量与平面的法向量垂直,则;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.9.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文10.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或11.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为12.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线方程为___________.14.已知直线过点,,且是直线的一个方向向量,则__________.15.棱长为的正方体的顶点到截面的距离等于__________.16.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点分别在射线,上运动,且(1)求;(2)求线段的中点M的轨迹C的方程;(3)直线与,轨迹C及自上而下依次交于D,E,F,G四点,求证:18.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.19.(12分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.20.(12分)在平面直角坐标系xOy中,已知椭圆的离心率为,且短轴长为2.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心,若存在,求出直线l的方程;若不存在,说明理由.21.(12分)设函数(1)求的值;(2)求的极大值22.(10分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.2、D【解析】由空间向量运算法则得,利用向量的线性运算求出结果.【详解】因为点,分别是面对角线与的中点,,,,所以故选:D.3、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D4、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.5、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A6、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D7、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.8、D【解析】先判断出p、q的真假,再分别判断四个选项的真假.【详解】因为“若直线的方向向量与平面的法向量垂直,则或”,所以p为假命题;对于等轴双曲线,,所以离心率为,所以q为真命题.所以假命题,故A错误;为假命题,故B错误;为假命题,故C错误;为真命题,故D正确.故选:D9、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.10、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B11、B【解析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【点睛】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.12、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程【详解】解:∵,∴,又,∴曲线在点处的切线方程为,即.故答案为:.14、【解析】由题得,解方程组即得解.【详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:15、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.16、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2(2)(3)证明见详解【解析】(1)用两点间的距离公式和三角形的面积公式,结合已知直接可解;(2)根据中点坐标公式,结合(1)中结论可得;(3)要证,只需证和的中点重合,直接或利用韦达定理求出中点横坐标,证明其相等即可.【小问1详解】记直线的倾斜角为,则,易得所以因为,所以,整理得:【小问2详解】设点M的坐标为,则即,由(1)知,所以,即【小问3详解】要证,只需证和的中点重合,记D,E,F,G的横坐标分别为,易知直线的斜率(当时与渐近线平行或重合,此时与双曲线最多一个交点)则解方程组,得解方程组,得将代入,得所以因为所以所以和的中点的横坐标相等,所以和的中点重合,记其中点为N,则有,即18、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2公比为2的等比数列;【小问2详解】解:由(1)知,,所以,所以,检验时也满足上式,所以,所以,令,所以,故当即时,取得最小值,所以.19、(1);(2)证明见解析.【解析】(1)由和,联立求解;(2)由(1)易得直线:,直线:,,分别与x=t联立,求得M,N坐标,设,利用,得到,然后两边乘以,结合点P在椭圆上化简得到即可,【详解】(1)在椭圆中,,,,则,,由题意得:,又,解得,,所以椭圆的方程为.(2)由(1)可知,,,,则直线:,直线:,由题意,,联立,同理联立,设,则①,且点满足:,即,两边乘以,可得:,代入①得:,而,则,所以,,三点共线.20、(1)(2)存在,【解析】(1)根据离心率及短轴长,利用椭圆中的关系可以求出椭圆方程;(2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.【小问1详解】,,,,椭圆的标准方程为.【小问2详解】由已知可得,,,∴,∵,设直线的方程为:,代入椭圆方程整理得,设,,则,,∵,∴.即,因为,,即..所以,或.又时,直线过点,不合要求,所以.故存在直线:满足题设条件.21、(1)-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论