版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广州黄埔区第二中学2023届学业水平考试数学试题模拟卷(十)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.2.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种3.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.4.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.5.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.6.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为()A.10 B.50 C.60 D.1407.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.68.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④9.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A. B. C. D.10.已知随机变量服从正态分布,,()A. B. C. D.11.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.12.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,点是边的中点,则__________,________.14.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.15.设集合,,则____________.16.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.18.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.19.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).20.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.21.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.22.(10分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.2、C【解析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.3、A【解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.4、D【解析】
如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.5、B【解析】
由题意知,,由,知,由此能求出.【详解】由题意知,,,解得,,.故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.6、C【解析】从频率分布直方图可知,用水量超过15m³的住户的频率为,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C7、B【解析】
先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.8、B【解析】
根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型9、A【解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,∴,设,∴,当时,,函数单调递增,当时,,函数单调递减,∴,当时,,当,,函数恒过点,分别画出与的图象,如图所示,,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,∴且,即,且∴,故实数m的最大值为,故选:A【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.10、B【解析】
利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.11、D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.12、D【解析】
根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【详解】中,,,可得因为点是边的中点,所以故答案为:;.【点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.14、【解析】
设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15、【解析】
先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.16、【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.18、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)连接交于点,取中点,连结,证明平面得到答案.(Ⅱ)分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【详解】(Ⅰ)连接交于点,取中点,连结因为为菱形,所以.因为,所以.因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以因为所以是平行四边形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知两两垂直,分别以为轴建立如图所示的空间直角坐标系.设设平面的法向量为,由,取.平面的法向量为.所以二面角余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19、(1)1;(2)见解析【解析】
(1)分别求得与的导函数,由导函数与单调性关系即可求得的值;(2)由(1)可知当时,,当时,,因而,构造,由对数运算及不等式放缩可证明,从而不等式可证明.【详解】(1)∵函数在上单调递减,∴,即在上恒成立,∴,又∵函数在上单调递增,∴,即在上恒成立,,∴综上可知,.(2)证明:由(1)知,当时,函数在上为减函数,在上为增函数,而,∴当时,,当时,.∴∴即,∴.【点睛】本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题.20、(1)(2)分布列见解析,期望为20【解析】
利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光学玻璃在安防监控中的应用考核试卷
- 建筑装饰与城市生活方式考核试卷
- 木材的退火和固化过程考核试卷
- 内陆养殖广阔蓝色的发展之路考核试卷
- 天然气开采业的战略人才培养与引进考核试卷
- 制定员工职业生涯规划的培训考核试卷
- 化学品安全及常用化学品考核试卷
- 企业与生态系统协同发展的机遇考核试卷
- 百万饭局课件教学课件
- 小班穿鞋课件教学课件
- 房地产组织架构图
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 停线管理规定
- 《我和小姐姐克拉拉》阅读题及答案(一)
- 大型展会对城市会展业发展影响文献综述会展专业
- 乡镇结核病防治工作职责
- 机组启动试运行工作报告
- 礼仪队工作计划三篇
- 互补输出级介绍
- 中波广播发送系统概述
评论
0/150
提交评论