版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山西省长治市屯留县第一中学高二上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.2.若方程表示圆,则实数m的取值范围为()A B.C. D.3.设等比数列的前项和为,若,则的值是()A. B.C. D.44.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.5.如图,空间四边形OABC中,,,,点M在上,且,点N为BC中点,则()A. B.C. D.6.如图所示几何体的正视图和侧视图都正确的是()A. B.C. D.7.某程序框图如图所示,该程序运行后输出的k的值是A.3 B.4C.5 D.68.双曲线的渐近线方程是()A. B.C. D.9.展开式的第项为()A. B.C. D.10.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.1611.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.12.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.50二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有且仅有两个不同的零点,则实数的取值范围是__________.14.若复数满足,则_____15.以点为圆心,且与直线相切的圆的方程是__________16.已知数列是等差数列,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,以坐标原点为圆心,以椭圆M的短半轴长为半径的圆与直线有且只有一个公共点(1)求椭圆M的标准方程;(2)过椭圆M的右焦点F的直线交椭圆M于A,B两点,过F且垂直于直线的直线交椭圆M于C,D两点,则是否存在实数使成立?若存在,求出的值;若不存在,请说明理由18.(12分)如图,四棱锥中,平面,∥,,,为上一点,平面(Ⅰ)求证:∥平面;(Ⅱ)若,求点D到平面EMC的距离19.(12分)如图,四棱锥中,底面ABCD是边长为2的菱形,,,且,E为PD的中点(1)求证:;(2)求二面角的大小;(3)在侧棱PC上是否存在点F,使得点F到平面AEC的距离为?若存在,求出的值;若不存在,请说明理由20.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.21.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围22.(10分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C2、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D3、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.4、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A5、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B6、B【解析】根据侧视图,没有实对角线,正视图实对角线的方向,排除错误选项,得到答案.【详解】侧视时,看到一个矩形且不能有实对角线,故A,D排除而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应从左上角画到右下角,故C排除.故选:B.7、B【解析】循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B考点:程序框图的功能8、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.9、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B10、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.11、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A12、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】函数有两个不同零点即y=a与g(x)=图像有两个交点,画出近似图象即得a的范围﹒【详解】∵函数有且仅有两个不同的零点,令,则y=a与g(x)=图像有两个交点,∵,∴当时,,单调递减,当时,,单调递增,∴当时,,作出函数与的图象,∴当时,y=a与g(x)有两个交点﹒故答案为:﹒14、【解析】设,则,利用复数相等,求出,的值,结合复数的模长公式进行计算即可【详解】设,则,则由得,即,则,得,则,故答案为【点睛】本题主要考查复数模长的计算,利用待定系数法,结合复数相等求出复数是解决本题的关键15、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用16、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】(1)求出后可得椭圆的标准方程.(2)设直线,联立直线方程和椭圆方程,消元后利用韦达定理可用表示,从而可求的值.【小问1详解】据题意,得,∴,∴所求椭圆M的标准方程为【小问2详解】据(1)求解知,点F坐标为若直线的斜率存在,且不等于0,设直线据得设,则,∴同理可求知,∴,∴,即此时存满足题设;若直线的斜率不存在,则;若直线的斜率为0,则,此时若,则综上,存在实数,且使18、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)运用线面平行的判定定理证明;(Ⅱ)借助体积相等建立方程求解即可【详解】(Ⅰ)证明:取的中点,连接,因为,所以,又因为平面,所以,所以平面,因为平面,所以∥,面,平面,所以∥平面;(Ⅱ)因为平面,面,所以平面平面,平面平面,过点作直线,则平面,由已知平面,∥,,可得,又,所以为的中点,在中,,在中,,,在中,,由等面积法知,所以,即点D到平面EMC的距离为.考点:直线与平面的位置关系及运用【易错点晴】本题考查的是空间的直线与平面平行的推证问题和点到直线的距离问题.解答时,证明问题务必要依据判定定理,因此线面的平行问题一定要在所给的平面中找出一条直线与这个平面外的直线平行,叙述时一定要交代面外的线和面内的线,这是许多学生容易忽视的问题,也高考阅卷时最容易扣分的地方,因此在表达时一定要引起注意19、(1)证明见解析(2)(3)存在;【解析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,用空间向量求解二面角;(3)设出F点坐标,用空间向量的点到平面距离公式进行求解.【小问1详解】证明:连接BD,设BD与AC交于点O,连接PO.因为,所以四棱锥中,底面ABCD是边长为2的菱形,则又,所以平面PBD,因为平面PBD,所以【小问2详解】因为,所以,所以由(1)知平面ABCD,以O为原点,,,的方向为x轴,y轴,z轴正方向,建立空间直角坐标系,则,,,,,,所以,,,设平面AEC的法向量,则,即,令,则平面ACD的法向量,,所以二面角为;【小问3详解】存在点F到平面AEC的距离为,理由如下:由(2)得,,设,则,所以点F到平面AEC的距离,解得,,所以20、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为21、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业绿化劳务分包合同模板
- 济宁学院《综合英语III》2021-2022学年第一学期期末试卷
- 吉首大学张家界学院《英语听力V》2023-2024学年第一学期期末试卷
- 急性胰腺炎护理
- 红斑丘疹鳞屑性皮肤病
- 2024年公司人力资源部年度工作总结
- 心梗病人危险期护理
- 翻译三级笔译综合能力分类模拟题34
- 选矿厂车间安全培训
- 二零二四年度文化主题乐园建设合同2篇
- 四象限时间管理表模板
- 10kV配电建设施工方案
- 人工智能辅助下的中小学英语个性化教学模式探究
- 千年之忧-回眸范仲淹和庆历新政
- 版式设计网格课件
- 礼貌原则和面子理论
- 河道保洁服务投标方案(完整技术标)
- 中小学校(幼儿园)伙食费审批表
- 富血小板血浆临床应用
- 电信网大试题专业题目应知应会题库
- 刘力红思考中医
评论
0/150
提交评论