2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题含解析_第1页
2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题含解析_第2页
2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题含解析_第3页
2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题含解析_第4页
2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省吉安市安福中学数学高二上期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数x,y满足,则的最大值为()A. B.C.2 D.12.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.13.等比数列,,,成公差不为0的等差数列,,则数列的前10项和()A. B.C. D.4.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.5.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.646.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.圆关于直线对称,则的最小值是()A. B.C. D.8.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.49.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题10.直线x﹣y+3=0的倾斜角是()A.30° B.45°C.60° D.150°11.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.12.已知数列满足:,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.14.写出一个数列的通项公式____________,使它同时满足下列条件:①,②,其中是数列的前项和.(写出满足条件的一个答案即可)15.数列的前项和为,若,则=____________.16.已知,,,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.18.(12分)解下列不等式:(1);(2).19.(12分)2021年2月12日,辛丑牛年大年初一,由贾玲导演的电影《你好,李焕英》上映,截至到2月21日22点8分,票房攀升至40.25亿,反超同期上映的《唐人街探案3》,迎来了2021春节档最具戏剧性的一幕.正是因为影片中母女间的这份简单、纯粹、诚挚的情感触碰了人们内心柔软的地方,打动了万千观众,才赢得了良好的口碑,不少观众都流下了感动的泪水.影片结束后,某电影院工作人员当日随机抽查了100名观看《你好,焕英》的观众,询问他们在观看影片的过程中是否“流泪”,得到以下表格:男性观众女性观众合计流泪20没有流泪520合计(1)完成表格中的数据,并判断是否有99.9%的把握认为观众在观看影片的过程中流泪与性别有关?(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,然后从这5人中再随机抽取2人,求这2人都流泪的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,20.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围21.(12分)如图所示的四棱锥的底面是一个等腰梯形,,且,是△的中线,点E是棱的中点(1)证明:∥平面(2)若平面平面,且,求平面与平面夹角余弦值(3)在(2)条件下,求点D到平面的距离22.(10分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:2、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.3、C【解析】先设等比数列的公比为,结合条件可知,由等差中项可知,利用等比数列的通项公式进行化简求出,最后利用分组求和法,以及等比数列、等差数列的求和公式,即可求出数列的前10项和.【详解】设等比数列的公比为,,,成公差不为0的等差数列,则,,都不相等,,且,,,,即,解得:或(舍去),,所以数列的前10项和:.故选:C.4、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题5、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.6、B【解析】根据充分条件和必要条件的概念即可判断.【详解】∵,∴“”是“”的必要不充分条件.故选:B.7、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.8、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.9、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.10、C【解析】先求斜率,再求倾斜角即可【详解】解:直线的斜截式方程为,∴直线的斜率,∴倾斜角,故选:C【点睛】本题主要考查直线的倾斜角与斜率,属于基础题11、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.12、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.14、(答案合理即可)【解析】当时满足,利用作差比较法即可证明.【详解】解:当时满足条件①②,证明如下:因为,所以;当时,;当时,;综上,.故答案为:(答案合理即可).15、【解析】利用裂项相消法求和即可.【详解】解:因为,所以.故答案为:.16、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)依题意在区间上恒成立,参变分离可得在区间上恒成立,再利用基本不等式计算可得;(2)首先求出命题为真时参数的取值范围,再根据“”为真,“”为假,即可得到真假,或假真,从而得到不等式组,解得即可;【小问1详解】解:为真命题,即函数在区间上是递增的∴在区间上恒成立,∴在区间上恒成立,∵,当且仅当时等号成立,∴的取值范围为.【小问2详解】解:为真命题,即方程有实数解∴即∴或∵“”为真,“”为假∴真假,或假真∴或,解得或,∴的取值范围为或;18、(1)(2)【解析】(1)利用十字相乘解题即可(2)利用分子分母同号为正,异号为负思想,注意讨论分母不为0【小问1详解】由题,即,解得或,即;【小问2详解】由题,解得或,即19、(1)填表见解析;有99.9%的把握认为观众在观看影片的过程中流泪与性别有关;(2)【解析】(1)由已知数据可完善列联表,然后计算可得结论;(2)根据分层抽样定义求出5人中流泪与没有流泪的观众人数并编号,用列举法写出作任取2人的所有基本事件,并得出2人都流泪的基本事件,计数后可计算概率【详解】解:(1)男性观众女性观众合计流泪206080没有流泪15520合计3565100所以有99.9%的把握认为观众在观看影片的过程中流泪与性别有关(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,则流泪的观众抽到人,记为,,,,没有流泪的观众抽到人,记为从这5人中抽2人有10种情况,分别是,,,,,,,,,其中这2人都流泪有6种情况,分别是,,,,,所以所求概率20、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.21、(1)证明见解析;(2);(3).【解析】(1)连接、,平行四边形的性质、线面平行的判定可得平面、平面,再根据面面平行的判定可得平面平面,利用面面平行的性质可证结论;(2)取的中点为,连接,证明出平面,,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.(3)利用等体积法,求D到平面的距离【小问1详解】连接、,由、分别是棱、的中点,则,平面,平面,则平面又,且,∴且,四边形是平行四边形,则,平面,平面,则平面又,可得平面平面.又平面∴平面【小问2详解】由知:,又平面平面,平面平面,平面,∴平面取的中点为,连接、,由且,故四边形为平行四边形,故,则△为等边三角形,故,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系易知,,所以、、、、,,,,设平面的法向量为,则,令,得设平面的法向量为,则,令,得设平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论