2023-2024学年济南市育英中学数学高二上期末联考模拟试题含解析_第1页
2023-2024学年济南市育英中学数学高二上期末联考模拟试题含解析_第2页
2023-2024学年济南市育英中学数学高二上期末联考模拟试题含解析_第3页
2023-2024学年济南市育英中学数学高二上期末联考模拟试题含解析_第4页
2023-2024学年济南市育英中学数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年济南市育英中学数学高二上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.42.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为3.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.14.在空间直角坐标系中,点关于平面的对称点的坐标是()A. B.C. D.5.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.06.等差数列中,,则()A. B.C. D.7.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.8.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底10.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.11.在的展开式中,只有第4项的二项式系数最大,且所有项的系数和为0,则含的项的系数为()A.-20 B.-15C.-6 D.1512.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在四棱锥中,是边长为4的等边三角形,四边形ABCD是等腰梯形,,,,若四棱锥的体积为24,则四棱锥外接球的表面积是___________.14.数列中,,则______15.已知直线过点,,且是直线的一个方向向量,则__________.16.函数在区间上的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.18.(12分)已知数列满足(1)证明数列是等比数列,并求数列的通项公式;(2)令,求数列的前项和19.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.20.(12分)球形物体天然萌,某食品厂沿袭老字号传统,独家制造并使用球形玻璃瓶用于售卖酸梅汤,其中瓶子的制造成本c(分)与瓶子的半径r(cm)的平方成正比,且当cm时,制造成本c为3.2π分,已知每出售1mL的酸梅汤,可获得0.2分,且制作的瓶子的最大半径为6cm(1)写出每瓶酸梅汤的利润y与r的关系式(提示:);(2)瓶子半径多大时,每瓶酸梅汤的利润最大,最大为多少?(结果用含π的式子表示)21.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.22.(10分)在四面体ABCD中,CB=CD,,且E,F分别是AB,BD的中点,求证:(I)直线;(II).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B2、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A3、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A4、C【解析】根据空间里面点关于面对称的性质即可求解.【详解】在空间直角坐标系中,点关于平面的对称点的坐标是.故选:C.5、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A6、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.7、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D8、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.9、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.10、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.11、C【解析】先由只有第4项的二项式系数最大,求出n=6;再由展开式的所有项的系数和为0,用赋值法求出,用通项公式求出的项的系数.【详解】∵在的展开式中,只有第4项的二项式系数最大,∴在的展开式有7项,即n=6;而展开式的所有项的系数和为0,令x=1,代入,即,所以.∴是展开式的通项公式为:,要求含的项,只需,解得,所以系数为.故选:C12、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据球的截面圆圆心与球心的连线垂直截面可确定垂直平面ABCD,构造直角三角形求解球的半径即可得解.【详解】如图,分别取BC,AD的中点,E,连接PE,,,.因为是边长为4的等边三角形,所以.因为四边形ABCD是等腰梯形,,,,所以,.因为四棱锥的体积为24,所以,所以.因为E是AD的中点,所以.因为,所以平面ABCD.因为,所以四边形ABCD外接圆的圆心为,半径.设四棱锥外接球的球心为O,连接,OP,OB,过点О作,垂足为F.易证四边形是矩形,则,.设四棱锥外接球的半径为R,则,即,解得,故四棱锥外接球的表面积是.故答案为:14、1【解析】根据可得,则,所以可得数列是以6为周期周期数列,再由计算出的值,再利用对数的运算性质可求得结果【详解】因为,所以,所以,所以数列是以6为周期的周期数列,因为,,所以,所以,所以所以,故答案为:115、【解析】由题得,解方程组即得解.【详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:16、【解析】先对函数求导判断其单调性,然后利用单调性求函数的最小值【详解】解:由,得,当且仅当时取等号,即取等号,因为,所以函数在区间上单调递增,所以当时,函数取得最小值0,故答案为:0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.18、(1)证明见解析,(2)【解析】(1)根据等比数列的定义证明数列是以为首项,2为公比的等比数列,进而求解得答案;(2)根据错位相减法求和即可.【小问1详解】解:数列满足,∴数列是以为首项,2为公比的等比数列,,即;∴【小问2详解】解:,,,,19、(1);(2)存在,.【解析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方程,根据韦达定理即可求出点的坐标【小问1详解】设动圆的圆心,依题意:化简得:,即为动圆的圆心的轨迹的方程【小问2详解】假设存在点,满足条件,使①,显然直线斜率不为0,所以由直线过点,可设,由得设,,,,则,由①式得,,即消去,,得,即,,,存在点使得20、(1),(2)当时,每瓶酸梅汤的利润最大,最大利润为28.8π【解析】(1)直接由条件写出关系式即可;(2)直接求导确定单调性后,求出最大值即可.【小问1详解】设瓶子的制造成本c与瓶子的半径r的平方成正比的比例系数等于k,则瓶子的制造成本,由题意,当时,∴,即瓶子的制造成本∴每瓶酸梅汤的利润是,∴每瓶酸梅汤的利润关于r的函数关系式为:,【小问2详解】由(1)知,则,令,则,当时,;当时,∴函数在上单调递减,在上单调递增,∴当时,每瓶酸梅汤的利润最大,最大利润为28.8π.21、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论