2024届安徽省皖中名校联盟高二上数学期末调研模拟试题含解析_第1页
2024届安徽省皖中名校联盟高二上数学期末调研模拟试题含解析_第2页
2024届安徽省皖中名校联盟高二上数学期末调研模拟试题含解析_第3页
2024届安徽省皖中名校联盟高二上数学期末调研模拟试题含解析_第4页
2024届安徽省皖中名校联盟高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省皖中名校联盟高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆的上半部分于点,F是椭圆C的右焦点,则()A.20 B.C.36 D.302.双曲线:的左、右焦点分别为、,过的直线与y轴交于点A、与双曲线右支交于点B,若为等边三角形,则双曲线C的离心率为()A. B.C.2 D.3.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.294.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④5.函数单调减区间是()A. B.C.和 D.6.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.7.在等差数列中,若的值是A.15 B.16C.17 D.188.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=x9.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面10.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.11.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.212.已知向量,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.i为虚数单位,复数______14.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.15.已知直线与垂直,则m的值为______16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和满足,数列满足(1)求,的通项公式;(2)若数列满足,求的前项和18.(12分)已知函数,.(1)若,求的最大值;(2)若,求证:有且只有一个零点.19.(12分)已知函数,求函数在上的最大值与最小值.20.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.21.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.22.(10分)已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由椭圆的对称性可知,,代入计算可得答案.【详解】设椭圆左焦点为,连接由椭圆的对称性可知,,所以.故选:D.2、B【解析】由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,从而即可求解.【详解】解:由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以双曲线C的离心率,故选:B.3、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题4、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题5、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B6、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.7、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题8、C【解析】过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,利用抛物线的定义和平行线的性质、直角三角形求解【详解】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此抛物线的方程为y2=3x,故选:C.9、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D10、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.11、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A12、B【解析】根据向量加减法运算的坐标表示即可得到结果【详解】故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.14、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.15、0或-9##-9或0【解析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-916、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由求得的递推关系,结合可得其为等比数列,从而得通项公式,代入计算得;(2)求出,由错位相减法求和【详解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【点睛】方法点睛:本题主要考查等比数列的通项公式及错位相减法求和.数列求和的常用方法:公式法、错位相减法、裂项相消法、分组(并项)求和法,倒序相加法18、(1)(2)证明见解析【解析】(1)利用导数判断原函数单调性,从而可求最值.(2)求导后发现导数中无参数,故单调性与(1)中所求一致,然后利用零点存在定理结合的范围,以及函数单调性证明在定义域内有且只有一个零点.【小问1详解】若,则,其定义域为,∴,由,得,∴当时,;当时,,∴在上单调递增,在上单调递减,∴【小问2详解】证明:,由(Ⅰ)知在上单调递增,在上单调递诚,∵,∴当时,,故在上无零点;当时,,∵且,∴在上有且只有一个零点.综上,有且只有一个零点.19、最大值为,最小值为【解析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.20、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以21、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为22、(1)(2)证明见解析,定点【解析】(1)先判断出在椭圆上,再代入求椭圆方程;(2)假设斜率存在,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论