版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省福州市鼓楼区数学高二上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.82.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.3.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.5.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.26.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.57.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定8.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.509.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.410.已知命题p:,,则()A., B.,C., D.,11.函数极小值为()A. B.C. D.12.加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的一个焦点为,则p的值为______14.若和或都是假命题,则的范围是__________15.等差数列,的前项和分别为,,且,则______.16.已知点,,,则外接圆的圆心坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长18.(12分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.19.(12分)已知抛物线上一点到其焦点F的距离为2.(1)求拋物线方程;(2)直线与拋物线相交于两点,求的长.20.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.21.(12分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,,AB=2,,平面,,,E是SA的中点(1)求直线EF与平面SCD所成角的正弦值;(2)在直线SC上是否存在点M,使得平面MEF平面SCD?若存在,求出点M的位置;若不存在,请说明理由22.(10分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C2、B【解析】根据“凹函数”的定义逐项验证即可解出【详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B3、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.4、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.5、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.6、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.7、A【解析】∵且,∴,又,∴,故选A.8、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A9、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A10、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.11、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.12、A【解析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆的两条切线的交点在圆上,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】利用椭圆标准方程概念求解【详解】因为焦点为,所以焦点在y轴上,所以故答案:314、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:15、【解析】取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.16、【解析】求得的垂直平分线的方程,在求得垂直平分线的交点,则问题得解.【详解】线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.由.所以外接圆的圆心坐标为.故答案为:.【点睛】本题考查直线方程的求解,直线交点坐标的求解,属综合基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)cm【解析】(1)设抛物线的标准方程为,由题意可得抛物线过点,将此点代入方程中可求出的值,从而可得抛物线方程,(2)设此时的口径长为,则抛物线过点,代入抛物线方程可求出的值,从而可求得答案【小问1详解】由题意,建立如图所示的平面直角坐标系,设抛物线的标准方程为,因为顶点深度4,口径长为12,所以该抛物线过点,所以,得,所以抛物线方程为;【小问2详解】若将磨具的顶点深度减少,设此时的口径长为,则可得,得,所以此时该磨具的口径长18、当矩形面积最大时,矩形边AB长,BC长【解析】先设出点坐标,进而表示出矩形的面积,通过求导可求出其最大面积.【详解】设点,那么矩形面积,.令解得(负舍).所以S在(0,)上单调递增,在(,2)上单调递;..所以当时,S有最大值.此时答:当矩形面积最大时,矩形边AB长,BC长.19、(1)(2)【解析】(1)根据抛物线焦半径公式即可得解;(2)联立方程组求出交点坐标,即可得到弦长.【小问1详解】由题:抛物线上一点到其焦点F的距离为2,即,所以抛物线方程:【小问2详解】联立直线和得,解得,,20、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.21、(1)(2)存在,M与S重合【解析】(1)分别取AB,BC中点M,N,易证两两互相垂直,以为正交基底,建立空间直角坐标系,先求得平面SCD的一个法向量,再由求解;(2)假设存在点M,使得平面MEF平面SCD,再求得平面MEF的一个法向量,然后由求解.小问1详解】解:分别取AB,BC中点M,N,则,又平面则两两互相垂直,以为正交基底,建立如图所示的空间直角坐标系,,所以,设平面SCD的一个法向量为,,,则,,直线EF与平面SBC所成角的正弦值为.【小问2详解】假设存在点M,使得平面MEF平面SCD,,,设平面ME
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 领导慰问环卫工人发言稿
- 外企写字楼施工人员安全管理协议书(3篇)
- DB11T 1490-2017 人民防空工程防护设备安装验收技术规程
- 汇报课教案常见的天气系统教案
- 2024年医疗服务项目投资申请报告代可行性研究报告
- 考大学的励志故事
- 上海市市辖区(2024年-2025年小学五年级语文)人教版期末考试(下学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)人教版小升初真题(上学期)试卷及答案
- 湘教版三年级上册音乐教学计划教案
- 冷却塔技术规格书
- GB/T 14074-2017木材工业用胶粘剂及其树脂检验方法
- 钢栈桥工程安全检查和验收
- FDS软件介绍及实例应用
- 高原疾病防治知识培训课件
- 强基计划解读系列课件
- 2022-2023学年山东省济南市高一上学期期中考试英语试题 Word版含答案
- 玉米高产高效生产技术全套课件
- 《24点大挑战》教学-完整版课件
- 胸痛的鉴别诊断与危险分层课件
- 胜达因高速泵介绍课件
- 监理通风与空调质量评估报告
评论
0/150
提交评论