2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题含解析_第1页
2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题含解析_第2页
2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题含解析_第3页
2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题含解析_第4页
2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省佳木斯市一中高二上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.棱长为1的正四面体的表面积是()A. B.C. D.2.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.83.若,则实数的取值范围是()A. B.C. D.4.执行如图所示的程序框图,则输出S的值是()A. B.C. D.5.过两点和的直线的斜率为()A. B.C. D.6.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则为()A. B.C. D.7.在等差数列中,若,则()A.6 B.9C.11 D.248.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,9.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.10.已知不等式解集为,下列结论正确的是()A. B.C D.11.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或12.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.15.若函数在区间上单调递减,则实数的取值范围是____________.16.设、、是三个不同的平面,、是两条不同的直线,给出下列三个结论:①若,,则;②若,,则;③若,,则其中,正确结论的序号为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.18.(12分)已知数列是递增的等比数列,是其前n项和,,(1)求数列的通项公式;(2)设,求数列的前n项和19.(12分)已知等比数列{}的各项均为正数,,,成等差数列,,数列{}的前n项和,且.(1)求{}和{}的通项公式;(2)设,记数列{}的前n项和为.求证:.20.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.21.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围22.(10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D2、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B3、B【解析】由题意可知且,构造函数,可得出,由函数的单调性可得出,利用导数求出函数的最小值,可得出关于的不等式,由此可解得实数的取值范围.【详解】因为,则且,由已知可得,构造函数,其中,,所以,函数为上的增函数,由已知,所以,,可得,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,则,所以,,解得.故选:B.4、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C5、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D6、B【解析】根据空间向量运算求得正确答案.【详解】.故选:B7、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B8、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.9、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B10、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.11、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.12、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积14、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.15、【解析】求解定义域,由导函数小于0得到递减区间,进而得到不等式组,求出实数的取值范围.【详解】显然,且,由,以及考虑定义域x>0,解得:.在区间,上单调递减,∴,解得:.故答案为:16、①②【解析】利用线面垂直的性质可判断命题①、②的正误;利用特例法可判断命题③的正误.综合可得出结论.【详解】、、是三个不同的平面,、是两条不同的直线.对于①,若,,由同垂直于同一平面的两直线平行,可得,故①正确;对于②,若,,由同垂直于同一直线的两平面平行,可得,故②正确;对于③,若,,考虑墙角处的三个平面两两垂直,可判断、相交,则不正确故答案为:①②【点睛】本题考查空间中线面、面面位置关系有关命题真假的判断,考查推理能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.18、(1);(2).【解析】(1)根据给定条件求出数列的公比即可计算得解.(2)由(1)的结论求出,然后利用分组求和方法求解作答.【小问1详解】设等比数列的公比为q,而,且是递增数列,则,,解得,所以数列的通项公式是:.【小问2详解】由(1)知,,,,所以数列的前n项和.19、(1)(2)证明见解析【解析】设等比数列的公比为,由,,成等差数列,解得.由,利用通项公式解得,可得.由数列的前项和,且,时,,化简整理即可得出;(2),利用裂项求和方法、数列的单调性即可证明结论【小问1详解】设等比数列的公比为,,,成等差数列,,即,化为:,解得,,即,解得,数列的前项和,且,时,,化为:,,数列是每项都为1的常数列,,化为【小问2详解】证明:,数列的前项和为,20、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.21、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论