




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省第二师范学院番禺附属中学高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机取一个数则该数满足的概率为()A. B.C. D.2.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人3.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.4.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1445.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.6.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.7.直线的倾斜角为()A.60° B.30°C.120° D.150°8.函数在和处的导数的大小关系是()A. B.C. D.不能确定9.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.10.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.11.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.12.在中,内角的对边分别为,若,则角为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.14.函数,若,则的值等于_______15.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________16.函数是R上的单调递增函数,则a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.18.(12分)已知数列满足,且.(1)求数列的通项公式;(2)若,为数列的前n项和,求.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值20.(12分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程21.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和22.(10分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.2、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B3、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选4、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.5、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.6、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.7、C【解析】求出斜率,根据斜率与倾斜角的关系,即可求解.【详解】解:,即,直线的斜率为,即直线的倾斜角为120°.故选:C.8、A【解析】求出函数导数即可比较.【详解】,,所以,即.故选:A.9、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D10、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C11、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B12、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-214、【解析】对函数进行求导,把代入导函数中,化简即可求出的值.【详解】函数.故答案为:.15、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.316、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.(2)设直线的方程为:,利用圆心到直线的距离即可求解.【小问1详解】圆的标准方程为:,所以,圆心为由圆心在直线上,得.所以,圆的方程为:【小问2详解】由题意可知直线的斜率存在,设直线的方程为:,即由于直线和圆相切,得解得:所以,直线方程为:或.18、(1)(2)【解析】(1)由题意可得数列是以2为公差的等差数列,再由可求出,从而可求出通项公式,(2)由(1)可得,然后利用分组求和可求出【小问1详解】因为数列满足,所以数列是以2为公差的等差数列,因为,所以,得,所以【小问2详解】由(1)可得,所以19、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为20、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可得圆C1的标准方程;(2)当直线的斜率不存在时,求得直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设出直线方程,由已知弦长可得圆心到直线的距离,再由点到直线的距离公式列式求k,则直线方程可求【小问1详解】∵原点O到直线的距离为,∴圆C1的标准方程为;【小问2详解】当直线l的斜率不存在时,直线方程为x=1,代入,得,即直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设直线方程为,即∵直线l被圆C1所截得的弦长为,圆的半径为2,则圆心到直线l的距离,解得∴直线l的方程为,即综上,直线l的方程为或21、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.22、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论