




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省大连市甘井子区渤海高中高二数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,那()A.19 B.31C.52 D.1042.已知实数、满足,则的最大值为()A. B.C. D.3.在下列函数中,最小值为2的是()A. B.C. D.4.已知圆与圆外切,则()A. B.C. D.5.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.37.函数的值域为()A. B.C. D.8.已知,,若,则()A.6 B.11C.12 D.229.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.310.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.11.已知是抛物线:的焦点,直线与抛物线相交于,两点,满足,记线段的中点到抛物线的准线的距离为,则的最大值为()A. B.C. D.12.直线被圆所截得的弦长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导数为,且,则___________14.设双曲线C:(a>0,b>0)的一条渐近线为y=x,则C的离心率为_________15.直线与圆相交于A,B两点,则的最小值为__________.16.在空间直角坐标系中,点到x轴的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程18.(12分)如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围19.(12分)已知抛物线上一点到抛物线焦点的距离为,点关于坐标原点对称,过点作轴的垂线,为垂足,直线与抛物线交于两点.(1)求抛物线的方程;(2)设直线与轴交点分别为,求的值;(3)若,求.20.(12分)如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;21.(12分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值22.(10分)已知数列为等差数列,公差,前项和为,,且成等比数列(1)求数列的通项公式(2)设,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D2、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.3、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C4、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.5、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键6、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.7、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C8、C【解析】根据递推关系式计算即可求出结果.【详解】因为,,,则,,,故选:C.9、B【解析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B10、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.11、C【解析】设,过点,分别作抛物线的准线的垂线,垂足分别为,进而得,再结合余弦定理得,进而根据基本不等式求解得.【详解】解:设,过点,分别作抛物线的准线的垂线,垂足分别为,则,因为点为线段中点,所以根据梯形中位线定理得点到抛物线的准线的距离为,因为,所以在中,由余弦定理得,所以,又因为,所以,当且仅当时等号成立,所以,故.所以的最大值为.故选:C【点睛】本题考查抛物线的定义,直线与抛物线的位置关系,余弦定理,基本不等式,考查运算求解能力,是中档题.本题解题的关键在于根据题意,设,进而结合抛物线的定于与余弦定理得,,再求最值.12、A【解析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,而,所以,,故填:.考点:导数14、【解析】根据已知可得,结合双曲线中的关系,即可求解.【详解】由双曲线方程可得其焦点在轴上,因为其一条渐近线为,所以,.故答案为:【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.15、【解析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.16、【解析】由空间直角坐标系中点到轴的距离为计算可得【详解】解:空间直角坐标系中,点到轴的距离为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.18、(1)证明见解析;(2).【解析】(1)取的中点F,连接.先证明,,即证平面,原题即得证;(2)分别取的中点G,H,连接,证明为直线与平面所成的角,设正方形的边长为1,,在中,,即得解.【小问1详解】解:取的中点F,连接因为,则为正三角形,所以因为平面平面,则平面因为平面,则.①因为四边形为正方形,E为的中点,则,所以,从而,所以.②又平面,结合①②知,平面,所以【小问2详解】解:分别取的中点G,H,则,又,,则,所以四边形为平行四边形,从而.因为,则因为平面平面,,则平面,从而,因为平面,所以平面,从而平面连接,则为直线与平面所成的角.设正方形的边长为1,,则从而,.在中,因为当时,单调递增,则,所以直线与平面所成角的余弦值的取值范围是.19、(1);(2);(3).【解析】(1)运用抛物线的定义进行求解即可;(2)设出直线的方程,与抛物线的方程联立,可求得点和的纵坐标,结合直线点斜式方程、两点间距离公式进行求解即可;(3)利用弦长公式求得,由两点间距离公式求得和,再解方程即可.【小问1详解】抛物线的准线方程为:,因为点到抛物线焦点的距离为,所以有;小问2详解】由题意知,,,设,则,,,,所以直线的方程为,联立,消去得,,解得,设,,,,不妨取,,直线的斜率为,其方程为,令,则,同理可得,所以,而,所以;【小问3详解】,其中,,,因为,所以,化简得,解得(舍负),即,所以【点睛】关键点睛:运用抛物线的定义、弦长公式进行求解是解题的关键.20、(1)证明见解析(2)【解析】(1)通过证明和可得答案;(2)连接,则为直线与平面所成角的平面角,在直角三角形中计算即可.【小问1详解】棱柱为直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小问2详解】连接,面,则为直线与平面所成角的平面角在直角三角形中,则,,所以直线与平面所成角的大小为.21、(1);(2)0【解析】(1)由题意得,则可得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的极小值.【详解】(1),当时,有极大值3,所以,解得,经检验,满足题意,所以;(2)由(1)得,则,令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康教育:吸虫病的认知与防治
- 2025年度文化产业专项借款合同补签书
- 2025版纺织原料价格指数监测与预警合同
- 2025年生态旅游区绿化景观设计与施工合同
- 2025年产权车位买卖合同及车位广告位租赁合作合同
- 二零二五年度休闲度假村场地租赁合同范本
- 二零二五年度全国首套房产交易保障服务合同书
- 2025版报刊亭网络信息安全管理与服务合同
- 2025版电子商务平台分期加盟合作协议
- 2025版定制化工程门清工安装与设计合同
- 哔哩哔哩认证公函
- 托玛琳养生碗gg课件
- 关节穿刺入路课件
- 水产养殖示范基地建设项目实施方案
- 行政后勤人员 三级安全教育培训记录卡
- 河北省张家口市各县区乡镇行政村村庄村名居民村民委员会明细
- 树木学(总论)课件
- 消化系统炎症性肠病labc
- DB52∕T 1480-2019 GLW-8430连栋塑料薄膜温室通用技术规范
- 员工推举代表书
- 自动化食用菌大棚设计方案
评论
0/150
提交评论