版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省长沙市宁乡市高二上数学期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.2.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.3.的二项展开式中,二项式系数最大的项是第()项.A.6 B.5C.4和6 D.5和74.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.5.已知直线,,,则m值为()A. B.C.3 D.106.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离7.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.38.已知命题,,则()A., B.,C., D.,9.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.8610.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.11.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.612.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知为坐标原点,等轴双曲线的右焦点为,点在双曲线上,由向双曲线的渐近线作垂线,垂足分别为、,则四边形的面积为______.14.函数是R上的单调递增函数,则a的取值范围是______15.已知等比数列中,则q=___16.,利用课本中推导等差数列前项和的公式的方法,可求得______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?18.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间19.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小20.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值21.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.22.(10分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由函数单调性得出和的解,然后分类讨论解不等式可得【详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A2、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C3、A【解析】由二项展开的中间项或中间两项二项式系数最大可得解.【详解】因为二项式展开式一共11项,其中中间项的二项式系数最大,易知当r=5时,最大,即二项展开式中,二项式系数最大的为第6项.故选:A4、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.5、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C6、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.7、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.8、C【解析】利用全称量词命题的否定可得出结论.【详解】命题为全称量词命题,该命题的否定为,.故选:C.9、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.10、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.11、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D12、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出双曲线的方程,可求得双曲线的两条渐近线方程,分析可知四边形为矩形,然后利用点到直线的距离公式以及矩形的面积公式可求得结果.【详解】因为双曲线为等轴双曲线,则,,可得,所以,双曲线的方程为,双曲线的渐近线方程为,则双曲线的两条渐近线互相垂直,则,,,所以,四边形为矩形,设点,则,不妨设点为直线上的点,则,,所以,.故答案为:.14、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.15、3【解析】根据等比数列的性质求得,再根据等比数列的通项公式求得答案.【详解】等比数列中,故,,所以,故答案为:316、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)用插空法,现排唱歌,利用产生的空排跳舞;(2)先排唱歌再排舞蹈.【小问1详解】解:先排歌唱节目有种,歌唱节目之间以及两端共有7个空位,从中选5个放入舞蹈节目,共有种方法,所以任何两个舞蹈节目不相邻的排法有种方法.【小问2详解】解:先排舞蹈节目有种方法,在舞蹈节目之间以及两端共有6个空位,恰好供6个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有种方法.18、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.19、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设,由得,,即.则.设平面BDC1的一个法向量为,则,不妨令,则.因为面,所以面的一个法向量为记二面角的平面角为,由图知,为锐角.所以,即.所以二面角的大小为.20、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.21、(1)(2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳馆勘察技术标投标
- 环保工程招投标委托书模板
- 农药原料招投标专员操作指南
- 本溪市供热服务用户体验优化
- 亲子活动中心租赁
- 新能源汽车项目保函策略
- 旅游服务提升工程中心管理办法
- 老旧小区改造评估师招聘协议
- 医疗资源区二手房买卖范本
- 交通运输枢纽站房租赁合同
- 咯血的介入治疗
- 教师专业成长概述教师专业发展途径PPT培训课件
- 球磨机安装专项施工方案
- 阀门压力等级对照表优质资料
- GMP质量管理体系文件 中药材干燥SOP
- YY/T 0874-2013牙科学旋转器械试验方法
- GB/T 25217.10-2019冲击地压测定、监测与防治方法第10部分:煤层钻孔卸压防治方法
- GB/T 21010-2007土地利用现状分类
- 下库大坝混凝土温控措施(二次修改)
- 医药代表初级培训课程课件
- SAT长篇阅读练习题精选14篇(附答案)
评论
0/150
提交评论