2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题含解析_第1页
2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题含解析_第2页
2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题含解析_第3页
2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题含解析_第4页
2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州省百校大联考高二上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离2.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.3.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含4.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)5.椭圆的焦点坐标为()A.和 B.和C.和 D.和6.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆7.直线恒过定点()A. B.C. D.8.若双曲线的焦距为,则双曲线的渐近线方程为()A. B.C. D.9.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同10.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.11.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.12.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人二、填空题:本题共4小题,每小题5分,共20分。13.如图是某赛季CBA广东东莞银行队甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙比赛得分的中位数之和是______.14.从正方体的8个顶点中选取4个作为项点,可得到四面体的概率为________15.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________16.若直线与曲线没有公共点,则实数的取值范围是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.18.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.19.(12分)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.20.(12分)如图,在四棱锥中,平面,底面是直角梯形,,,,,为侧棱包含端点上的动点.(1)当时,求证平面;(2)当直线与平面所成角的正弦值为时,求二面角的余弦值.21.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.22.(10分)已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.2、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A3、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.4、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握5、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D6、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.7、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A8、A【解析】由焦距为可得,又,进而可得,最后根据焦点在轴上的双曲线的渐近线方程为即可求解.【详解】解:因为双曲线的焦距为,所以,所以,解得,所以,所以双曲线的渐近线方程为,即,故选:A.9、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:10、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;11、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B12、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、58【解析】分别将甲、乙两名运动员的得分按小到大或者大到小排序,分别确定中位数,再相加即可【详解】因为甲、乙两名篮球运动员各参赛11场,故中位数是第6个数甲的得分按小到大排序后为:12,22,23,32,33,34,35,40,43,44,46,所以,中位数为34乙的得分按小到大排序后为:12,13,21,22,23,24,31,31,34,40,49所以,中位数为24所以,中位数之和为34+24=58,故答案为:5814、【解析】计算出正方体的8个顶点中选取4个作为项点的取法和分从上底面取一个点下底面取三个点、从上底面取二个点下底面取二个点、从上底面取三个点下底面取一个点可得到四面体的取法,由古典概型概率计算公式可得答案.【详解】正方体的8个顶点中选取4个作为项点,共有取法,可得到四面体的情况有从上底面取一个点下底面取三个点有种;从上底面取二个点下底面取二个点有种,其中当上底面和下底面取的四个点在同一平面时共有10种情况不符合,此种情况共有种;从上底面取三个点下底面取一个点有种;一个有种,所以可得到四面体的概率为.故答案为:.15、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.16、;【解析】可化简曲线的方程为,作出其图形,数形结合求临界值即可求解.【详解】由可得,所以曲线为以为圆心,的下半圆,作出图形如图:当直线过点时,,可得,当直线与半圆相切时,则圆心到直线的距离,可得:或(舍),若直线与曲线没有公共点,由图知:或,所以实数的取值范围是:,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半径,∴圆的方程为;【小问2详解】由(1)可知圆的圆心,半径为.设为中点,则,,则.当的斜率不存在时,的方程为,此时,符合题意;当的斜率存在时,设的方程为,即kx-y+2=0,则,解得,故直线的方程为,即.综上,直线的方程为或.18、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程19、(1),,(2)第三组应抽人,第四组应抽人,第五组应抽人(3)【解析】(1)根据频率分布表的数据求出b,c,d的值;(2)三个组共有60人,从而利用分层抽样抽样方法抽取6名学生第三组应抽3人,第四组应抽2人,第五组应抽1人;(3)记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,利用列举法结合概率公式得出答案.【小问1详解】由题意得,,【小问2详解】三个组共有60人,所以第三组应抽人,第四组应抽人,第五组应抽人.【小问3详解】记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,从这6人中随机抽取2人,基本事件包含,共15个基本事件.其中2人来自同一组的情况有,共4种.所以,2人来自同一组的概率为.20、(1)证明见解析;(2).【解析】(1)连接交于,连接,证得,从而证得平面;(2)过作于,以为原点,建立空间直角坐标系,设,求面的法向量,由直线与平面所成角的正弦值为,求得的值,再用向量法求出二面角的余弦值.【详解】解:(1)连接交于,连接,由题意,∵,∴,∴,又面,面,∴面.(2)过作于,则在中,,,,以为原点,建立如图所示的空间直角坐标系.设,则,,,,,,,,设向量为平面的一个法向量,则由,有,令,得;记直线与平面所成的角为,则,解得,此时;设向量为平面的一个法向量则由,有,令,得;∴二面角的余弦值为.【点睛】本题考查了线面平行的判定与证明,用向量法求线面角,二面角,还考查了学生的分析能力,空间想象能力,运算能力,属于中档题.21、(1);(2).【解析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为22、(1):;:(2)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论