版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省中山一中、仲元中学等七校高二数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.2.在中,角A,B,C的对边分别为a,b,c,若,且,则为()A.等腰三角形 B.直角三角形C.锐角三角形 D.钝角三角形3.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.924.若,,,则a,b,c与1的大小关系是()A. B.C. D.5.已知数列为等差数列,若,则()A.1 B.2C.3 D.46.丹麦数学家琴生(Jensen)是19世纪对数学分析作出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在区间内的导函数为,在区间内的导函数为,在区间内恒成立,则称函数在区间内为“凸函数”,则下列函数在其定义域内是“凸函数”的是()A. B.C. D.7.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1138.已知等差数列,,,则数列的前项和为()A. B.C. D.9.直线的倾斜角为()A.-30° B.60°C.150° D.120°10.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.11.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:5012.数列满足,,则()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知正数、满足,则的最大值为__________14.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.15.的展开式中所有项的系数和为_________16.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.18.(12分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长19.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.20.(12分)某情报站有.五种互不相同的密码,每周使用其中的一种密码,且每周都是从上周末使用的四种密码中等可能地随机选用一种.设第一周使用密码,表示第周使用密码的概率(1)求;(2)求证:为等比数列,并求的表达式21.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论22.(10分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.2、B【解析】由余弦定理可得,再利用可得答案.【详解】因为,所以,由余弦定理,因为,所以,又,∴,故为直角三角形.故选:B.3、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.4、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.5、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D6、B【解析】根据基本初等函数的导函数公式求各函数二阶导函数,判断其在定义域上是否恒有,即可知正确选项.【详解】A:,则,显然定义域内有正有负,故不是“凸函数”;B:,则,故是“凸函数”;C:,则,故不是“凸函数”;D:,则,显然定义域内有正有负,故不是“凸函数”;故选:B7、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.8、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.9、C【解析】根据直线斜率即可得倾斜角.【详解】设直线的倾斜角为由已知得,所以直线的斜率,由于,故选:C.10、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B11、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.12、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.14、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.15、##0.015625【解析】赋值法求解二项式展开式中所有项的系数和.【详解】令得:,即为展开式中所有项的系数和.故答案为:16、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以18、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向量共线的关系,得出向量的坐标,根据线面平行得出向量垂直,利用其数量积等于零,求得结果.(Ⅰ)证明:因为平面⊥平面,且平面平面,因为⊥,且平面所以⊥平面因为平面,所以⊥.(Ⅱ)解:在△中,因为,,,所以,所以⊥.所以,建立空间直角坐标系,如图所示所以,,,,,,.易知平面的一个法向量为.设平面的一个法向量为,则,即,令,则.设二面角的平面角为,可知为锐角,则,即二面角的余弦值为(Ⅲ)解:因为点在棱,所以,因为,所以,.又因为平面,为平面的一个法向量,所以,即,所以所以,所以.19、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.20、(1),,,(2)证明见解析,【解析】(1)根据题意可得第一周使用A密码,第二周使用A密码的概率为0,第三周使用A密码的概率为,以此类推;(2)根据题意可知第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为,进而可得,结合等比数列的定义可知为等比数列,利用等比数列的通项公式即可求出结果.【小问1详解】,,,【小问2详解】第周使用A密码,则第周必不使用A密码(概率为),然后第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为故,即故为等比数列且,公比故,故21、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.22、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度劳动合同解除与离职员工离职手续办理及经济补偿合同3篇
- 2025年度钢结构加固施工承包合同模板
- 2025年度农村个人耕地租赁与农业信息化建设合同3篇
- 农村农业劳务用工合同(2025年度)劳动权益维护协议
- 2025年度农村集体土地租赁合同范本(乡村旅游)
- 二零二五年度高速铁路信号系统安装合同安装协议3篇
- 宠物生活馆2025年度寄养及美容服务合同3篇
- 二零二五年度员工职务秘密及保密信息处理协议3篇
- 2025年度年度文化产业发展合伙人合同协议书3篇
- 2025年度养殖场劳务合同(畜禽疫病防控与治疗)3篇
- 一般工伤事故处理工作流程图
- 临床麻醉学试卷及答案
- 混合性焦虑和抑郁障碍的护理查房
- MOOC 发展心理学-北京大学 中国大学慕课答案
- 克罗恩病病例分享
- 《养老护理员》-课件:协助老年人转换体位
- 山东省高中生物教学大纲
- 2024中考语文《水浒传》历年真题(解析版)
- 接地电阻测试仪的操作课件
- 《机修工基础培训》课件
- 品质黄焖鸡加盟活动策划
评论
0/150
提交评论