版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年北京第十二中学高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.2.已知二次函数交轴于,两点,交轴于点.若圆过,,三点,则圆的方程是()A. B.C. D.3.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.4.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.6.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.17.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.108.某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A. B.C. D.9.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或611.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.12.如图,在正方体中,,,,若为的中点,在上,且,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数x,y满足约束条件,则的最大值是_________.14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______16.在中,,,的外接圆半径为,则边c的长为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.18.(12分)已知抛物线C:x2=4y的焦点为F,过F的直线与抛物线C交于A,B两点,点M在抛物线C的准线上,MF⊥AB,S△AFM=λS△BFM(1)当λ=3时,求|AB|的值;(2)当λ∈[]时,求|+|的最大值19.(12分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.20.(12分)已知函数f(x)=(1)求函数f(x)在x=1处的切线方程;(2)求证:21.(12分)用长度为80米的护栏围出一个一面靠墙的矩形运动场地,如图所示,运动场地的一条边记为(单位:米),面积记为(单位:平方米)(1)求关于的函数关系;(2)求的最大值22.(10分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.2、C【解析】由已知求得点A、B、C的坐标,则有AB的垂直平分线必过圆心,所以设圆的圆心为,由,可求得圆M的半径和圆心,由此求得圆的方程.【详解】解:由解得或,所以,又令,得,所以,因为圆过,,三点,所以AB的垂直平分线必过圆心,所以设圆的圆心为,所以,即,解得,所以圆心,半径,所以圆的方程是,即,故选:C3、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.4、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.5、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B6、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.7、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.8、D【解析】利用抽样的性质求解【详解】所有学生数为,所以所求概率为.故选:D9、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D10、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D11、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.12、B【解析】利用空间向量的加减法、数乘运算推导即可.【详解】.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得的最大值.【详解】,画出可行域如下图所示,由图可知,平移基准直线到点时,取得最大值为.故答案为:14、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.16、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆心的坐标为,半径;(2)【解析】(1)利用配方法化圆的一般方程为标准方程,可得圆心坐标与半径;(2)由两点间的距离公式求得,得到与,则的取值范围可求【小问1详解】解:由,得,圆心的坐标为,半径;【小问2详解】解:,,,,的取值范围是18、(1)(2)【解析】(1)由面积之比可得向量之比,设直线AB的方程,与抛物线的方程联立求出两根之和及两根之积,与向量的关系可得的A,B的横坐标的关系联立求出直线AB的斜率,再由抛物线的性质可得焦点弦的值;(2)由(1)的解法类似的求出AB的中点N的坐标,可得直线AB的斜率与λ的关系,再由λ的范围,求出直线AB的斜率的范围,由题意设直线MF的方程,令y=﹣1求出M的横坐标,进而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小问1详解】当λ=3时,即S△AFM=3S△BFM,由题意可得=3,因为抛物线C:x2=4y的焦点为F(1,0),准线方程为y=﹣1,设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,联立,整理可得:x2﹣4kx﹣4=0,显然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,则(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③联立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由抛物线的性质可得|AB|=y1+y2+2=4×+2=,所以|AB|的值为;【小问2详解】由(1)可得AB中点N(2k,2k2+2),由=λ,则x1=﹣λx2④,同(1)的算法:①②④联立4k2λ=(1﹣λ)2,因为λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],则函数y先减后增,所以λ=2或时,y最大且为2+,此时4k2最大,且为,所以k2的最大值为:,直线MF的方程为:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因为|+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值为19、(1)(2)【解析】(1)当时,化简得到,进而得到数列的通项公式;(2)由(1)得到,结合裂项法,即可求解.【小问1详解】解:由题意,数列的前n项和,且,当时,,当时,,满足上式,所以数列的通项公式为.【小问2详解】解:由,可得,所以.20、(1)y=5x-1;(2)证明见解析【解析】(1)求出导函数,求出切线的斜率,切点坐标,然后求切线方程(2)不等式化简为.设,求出导函数,判断函数的单调性求解函数的最值,然后证明即可【详解】解:(1)的定义域为,的导数由(1)可得,则切点坐标为,所求切线方程为(2)证明:即证.设,则,由,得当时,;当时,在上单调递增,在上单调递减,(1),即不等式成立,则原不等式成立21、(1)(2)平方米【解析】(1)由题意得矩形场地的另一边长为80-2x米,通过矩形面积得出关于的函数表达式;(2)利用二次函数的性质求出的最大值即可【小问1详解】解:由题意得矩形场地的另一边长为80-2x米,又,得,所以【小问2详解】解:由(1)得,当且仅当时,函数取得最大值平方米22、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务续签合同(2篇)
- 医院和透析机构合作协议书(2篇)
- 2024年度农业现代化发展-智能灌溉系统设备采购合同
- 2024年度北京牌照租赁税务处理合同
- 2024年度环保工程污染治理协议
- 财务数据可视化中的数据安全与隐私保护
- 皮革胃化疗方案
- 服务智能化运维
- 儿童语言发展的社会文化因素分析
- 2024版艺术家经纪合同
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- DL∕T 5161.17-2018 电气装置安装工程质量检验及评定规程 第17部分:电气照明装置施工质量检验
- 中小学十五五发展规划(2025-2030)
- 语文园地四 写话 学写留言条(教学设计)统编版语文二年级上册
- 八年级下册 第六单元 23《马说》公开课一等奖创新教学设计
- 理智与情感:爱情的心理文化之旅智慧树知到期末考试答案章节答案2024年昆明理工大学
- 期末模拟考试03-【中职专用】《心理健康与职业生涯》(高教版2023·基础模块)(含答案)
- GB 20052-2024电力变压器能效限定值及能效等级
- 陶行知与乡村教育智慧树知到期末考试答案章节答案2024年丽水学院
- 人民调解卷宗规范化制作说明
- 手术切口感染PDCA案例
评论
0/150
提交评论