




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE PAGE第2页共12页第四章图形认识初步4.1.1几何图形教学目标:1、能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。2、经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。3、积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;、倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点难点:立体图形与平面图形之间的转化是难点教学过程一、引入新课请同学们看课本P116中的图4.1-1,提出问题:在同学们所观看的图中,有哪些是我们熟悉的几何图形?二、讲授新课1、学生在回顾刚才所看的图片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.2、指定一名学生回答问题,并能正确说出这些几何图形的名称。学生回答:有圆柱、长方体、正方体等等。教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。3、立体图形的概念。(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)请同学们看课本P118图4.1-4(4)提出问题:在这幅图中,包含哪些简单的平面图形?(5)探索解决问题的方法。①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。4、平面图形的概念。长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。5、立体图形和平面图形的转化。(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看。(2)提出问题。从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法。①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。②进行小组交流,评价各自获得的结论,得出正确结论。③指定三名学生,板书画出的图形。6、思考并动手操作。(1)学生活动:在小组中独立完成课本P119的探究课题,然后进行小组交流,评价。(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情。7、操作试验。(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系。三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、布置作业课本P123~P124习题4.1第1~6题4.1.2点、线、面、体教学目标:1、了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形。2、经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念。3、经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性。重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点难点:探索点、线、面、体运动变化后形成的图形是难点教学过程一、引入新课1、出示一个长方体模型,请同学们认真观察.2、提出问题:这个长方体有几个面?面和面相交成了几条线?线和线相交成几个点?二、讲授新课1、经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。2、各小组学生公布自己小组讨论后的结论。教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价。3、几何体的概念。(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?4、给出面的分类。通过对上面问题的解决,给出面的分类:平面和曲面。教师活动:板书:平面和曲面。提出问题:在小组活动中,教师指导学生看课本P121~P122内容,得出观察图片能发现的结论。师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的回答给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究。思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释。5、点、线、面、体与几何图形关系。指导学生阅读课本P122内容,总结出点、线、面、体与几何图形的关系。三、课堂小结1、本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体。2、点、线、面、体之间的关系。3、体验了在数学活动过程中小组合作的重要性。四、布置作业课本P125~P126习题4.1第7~12、13、14题4.2直线、射线、线段(1)教学目标:1、能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;会用字母表示直线、射线、线段,会根据语言描述画出图形。2、能在现实情境中,进行抽象的数学思考,提高抽象概括能力,经历画图的数学活动过程,提高学生的动手操作与实践能力。3、体验通过实验获得数学猜想,得到直线性质的过程。重点:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形。难点:根据语言描述画出图形.教学过程一、引入新课1、出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程。2、提出问题:为什么这样拉出线是直的?其关键是什么?二、讲授新课学生活动:学生经过小组交流后,总结出结论:两点确定一条直线。其关键在于先固定墨盒中墨线上两个点。教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1、探究直线性质。学生活动:完成课本P128探究课题,学生动手按要求画图,并进行小组交流,总结出课题结论。教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质。2、寻找生活中直线性质应用的例子。想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价)。3、直线、射线、线段的表示方法。学生活动:阅读课本P129有关内容。教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1、提出问题:下图中,有几条直线?几条射线?几条线段?说出它们的名称。注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价。2、根据语句画出图形。例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边。(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上。注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评。3、完成课本P129练习。注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,并请学生作出自我评价。四、课堂小结1、提问:直线的性质是什么?如何表示直线、射线、线段?2、本节课还学习了根据语句画图,知道了每一个语句都对应着一个几何图形。五、布置作业课本P132~P134习题3.2第1、2、3、4、10题4.2直线、射线、线段(2)教学目标:1、会用尺规画一条线段等于已知线段,会比较两条线段的长短;理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,了解“两点之间,线段最短”的线段性质。2、培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法。3、积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活。重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点难点:画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点教学过程一、引入新课1、提出问题:有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?教师活动:出示长短不同的两根木棒。学生活动:小组讨论,探索方法,总结出问题的解决方法。注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给予鼓励和肯定,以激发学生的学习兴趣。2、提出数学问题:上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a。二、讲授新课学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法。教师活动:参与学生小组讨论,指导学生探索问题的解决方法。1、用刻度尺量出已知线段长,在画出的射线(或直线)上量出相同长度的一条线段。2、用尺规截取.(按课本P130所讲方法)板书:画一条线段等于已知线段。3、思考课本P130的问题,从中得出数学问题:如何比较两条线段的长短?4、探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法。教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短。(1)用刻度尺分别测量出它们的长度进行比较。(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较。5、线段长短的比较结果。学生活动:通过上面的讨论,总结出线段比较结果。教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果。板书:(1)AB<CD(2)AB>CD(3)AB=CD6、线段的等分点。(1)线段的中点:教师活动:用多媒体演示,取线段AB上一点M,移动线段AM到线段MB上,当AM与MB完全重合时,线段AM=MB,此时点M就叫做线段AB的中点。板书:AM=MB=EQ\F(1,2)AB(2)线段的等分点:通过类比线段的中点,可得出线段的三等分点、四等分点.板书:AM=MN=NB=EQ\F(1,3)ABAM=MN=NP=PB=EQ\F(1,4)AB7、探索线段的性质(1)完成课本P132思考题(2)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短。教师活动:板书:线段的性质,并用几何语言完整归纳出线段性质。(3)举例说明线段的性质在生活中的应用。(4)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度。注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8、两点的距离。教师活动:讲解两点的距离定义。三、课堂小结1、本节课学会了画一条线段等于已知线段,学会了比较线段的长短。2、本节课学习了线段的性质和两点间距离的定义。3、懂得了知识来源于生活并用于生活的道理。四、布置作业课本P133~P114习题4.2第5、6、7、8、9、11题4.3.1角的度量(1)教学目标:1、在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法;认识角的度量单位度、分、秒,会进行简单的换算和角度计算。2、提高学生的识图能力,学会用运动变化的观点看问题。3、经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲。重点:会用不同的方法表示一个角,会进行角度的换算是重点难点:角的表示、角度的换算是难点教学过程一、引入新课1、观察时钟、四棱锥.2、提出问题:时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来。学生活动:进行独立思考、画图,然后观看教师的演示过程.教师活动:演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.板书:角.二、讲授新课1、角的概念.(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)2、角的表示.学生活动:阅读课本P137有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.请用适当的方法表示下图中的每个角.学生活动:请一个学生板书练习,其余学生独立练习.教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价.学生活动:阅读课本P138思考题,进行小组交流,获得问题结论.教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价.答案:分别形成平角、周角.3、角的度量.教师活动:指导学生阅读课本P138内容,讲解角的度量方法及度、分、秒的换算.板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?教师讲解计算过程.三、巩固练习1、课本P139练习2、计算:(1)48°39′+67°41′;(2)90°-78°19′40″; (3)22°30′×8; (4)176°52′÷3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评.3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案.答案:76.5°。四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角?2.本节课还复习了平面、周角?怎样得到这两种角?3.角的度量单位是什么?它们是如何换算的?五、作业布置课本P144习题4.3第1、2、3、4题4.3.1角的度量(2)教学目标:1、会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.2、经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.3、经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用。重点:会用量角器测量角的大小,会用尺规画一个角等于已知角难点:用尺规画一个角等于已知角教学过程一、引入新课1、画出一个五角星的图案,请学生观察图形.(如右图)2、提出问题:你知道五角星的五个角是多少度吗?你是怎样知道的?二、讲授新课学生活动:在小组中交流测量角的大小方法,可借助三角板估计角的度数,或用量角器量出角的度数.教师活动:巡视收集学生测量的方法,并请学生说明不同方法得出的结论有何不同,对学生的活动过程给予积极评价.结论:每个角均为36°.1.画一个角等于已知角.(1)提出问题:你能用量角器画一个角等于36°吗?能画一个角等于108°吗?学生活动:两个学生板书演示画图过程,其余同学独立完成.教师活动:巡视并指导学生画图.(2)提出问题:你能用三角板画出30°,45°,60°,90°等特殊角吗?学生活动:动手画图.教师活动:指导个别学生画图,评价学生的画图结果.2.用尺规画一个角等于已知角.探究:已知∠AOB,画一个角等于这个角.学生活动:先进行独立思考,阅读课本P139探究内容,动手画图,小组交流解决疑难,根据教师的演示,进行自我评价.教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法),指导学生进行自我评价:用量角器量∠A′O′B′与∠AOB,看一看度数是否相等.三、巩固练习任意画一个钝角∠AOB,用尺规画一个角等于∠AOB.师生互动:教师在黑板上画钝角∠AOB,请一个学生板书画图教师巡视指导其余学生画图.请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°的角.教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45°~30°,用两块三角板画出15°的角.四、课堂小结本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角.提出问题:请同学们说出你所知道的测量角的大小的仪器.(同学互相补充)教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器.五、作业布置课本P145~P146习题4.3第6、11、14题4.3.2角的比较与运算教学目标:1、在现实情境中,运用类比的方法,学会比较两个角的大小,丰富对角的大小关系的认识,会分析图中角的和差关系.2、通过动手操作,学会借助三角板拼出不同度数的角,认识角的平分线及角的等分线,会画角的平分线.3、进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.4、能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.重点:比较角的大小,认识角的大小关系,分析角的和差关系,认识角平分线及画角平分线难点:认识复杂图形中角的和差关系,比较两个角的大小教学过程一、引入新课教师活动:在黑板上画出一个三角形.(如右图所示)1、提出问题:比较图中线段AB、BC、CD的长短.学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法.教师活动:归纳学生的讨论结果,并演示用圆规比较AB、BC、CD三条线段长短的过程,并写出结论:AB>AC>BC.2、提出问题:怎样比较图中∠A、∠B、∠C的大小?学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.教师活动:(1)肯定评价学生提出的方法,并动手测量度数,比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,也可以把它们叠合在一起比较大小.二、讲授新课1、提出问题:如何用叠合的方法比较角的大小?学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果,然后观看多媒体演示角的比较过程.教师活动:巡视并指导学生进行角的比较活动过程,打开多媒体演示角的比较过程:把一个角移到另一个角上,顶点与一条边重合;两个角的另一边都在重合边的同侧.观察这两边的位置关系,就能得出两个角的大小关系.注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.完成课本P142练习.注:教师在评价学生完成练习的情况时,应对较好的方法给予肯定的评价,鼓励学生进行探索.2、认识角的和差.学生活动:思考课本P140观察中的问题,小组交流思考的结论.教师活动:讲解观察中的问题,给出图中各角之间的和差关系.(如右图)∠AOC=∠AOB+∠BOC,∠AOB=∠AOC-∠BOC.提出问题:∠AOC-∠AOB=________.3、动手操作:用三角板拼出特殊角,完成课本P140探究中的问题.学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由.提出问题:利用一副三角板还能拼出多少度的角?学生活动:小组交流后说出这些角的度数,各小组之间互相补充.教师活动:评价学生的结论,对学生的答案进行归纳补充.4\认识角的平分线.教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合.学生活动:观察老师演示过程,并思考下面问题.(如右图)提出问题:∠AOC被折痕OB分成的两个角有什么关系?在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?学生活动:阅读课本P140有关内容,回答上面问题.教师活动:讲解角平分线定义,板书:角的平分线.教师活动:指导学生看课本P141图4.3-5,讲解角的三等分线.请学生动手完成课本P138探究,加深对角的平分线的认识.在纸上画一个角,设法画出这个角的平分线.学生活动:思考并进行小组交流,总结出角平分线的画法并画图.教师活动:对学生总结出的画法进行评价,并演示画图过程.(1)借助量角器画图:以已知角顶点为顶点,已知角的一边为边,在已知线的内部画一个度数等于已知角度数一半的角,则这个角的另一边就是已知角的平分线.(2)用折叠方法:把角沿顶点对折,使角的两边重合,沿折痕在角的内部画一条射线即为已知角的平分线.三、课堂小结师生互动,共同总结本节课的学习内容:1、角的大小比较方法和角的大小关系有哪些?认识了角的哪些运算.2、本节课学习了用三角板拼出哪些角?3、角平分线的定义是什么?四、布置作业课本P145习题4.3第5、10、15题4.3.3余角和补角教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本P142有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本P143练习.学生活动:独立完成,并由三个学生进行板书,其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 17987-7:2025 EN Road vehicles - Local Interconnect Network (LIN) - Part 7: Electrical physical layer (EPL) conformance test specification
- 学校天然气使用协议书
- 成都安置房合同协议书
- 智能家居品牌及协议书
- 贝米钱包协议书
- 瓶装水生产转让协议书
- 毕业实习第三方协议书
- 终端购机协议书
- 排雷班主播签约协议书
- 快递员承包合同协议书
- 2025-2030新型钢材产业市场深度调研及前景趋势与投资研究报告
- 新媒体国企面试题及答案
- 烟道内喷涂施工方案
- 水电站运维管理
- 材料的断裂(1)
- 被子植物门分科检索表
- 监理预验收表格(共11页)
- 中国电信移动终端营销策略
- 百胜餐饮HIC高效能的辅导
- 皇家宠物食品有限公司的营销策略分
- 机电控制与可编程序控制器课程设计.doc
评论
0/150
提交评论