2023-2024学年贵州省遵义十二中九年级(上)第一次月考数学试卷(含解析)_第1页
2023-2024学年贵州省遵义十二中九年级(上)第一次月考数学试卷(含解析)_第2页
2023-2024学年贵州省遵义十二中九年级(上)第一次月考数学试卷(含解析)_第3页
2023-2024学年贵州省遵义十二中九年级(上)第一次月考数学试卷(含解析)_第4页
2023-2024学年贵州省遵义十二中九年级(上)第一次月考数学试卷(含解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州省遵义十二中九年级第一学期第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列属于一元二次方程的是()A.x2﹣3x+y=0 B.x C.x2+5x=0 D.x(x2﹣4x)=32.随着贵州“村超”的火爆出圈,黔东南州榕江县搭乘“村超”快车,“超级星期六足球之夜”品牌价值日益彰显,旅游业持续升温.据初步测算,榕江县已累计接待游客50万人次,实现旅游综合收入12.41亿元这个数据用科学记数法表示为()A.12.41×108元 B.1.241×109元 C.1.241×1010元 D.1.241×108元3.把一元二次方程(x﹣1)2=3x﹣2化为一般形式,若二次项系数是1,则一次项系数和常数项分别为()A.﹣3和3 B.﹣3和1 C.﹣5和3 D.﹣5和14.用配方法解一元二次方程x2﹣4x﹣2=0的过程中,配方正确的是()A.(x+2)2=2 B.(x﹣2)2=2 C.(x+2)2=6 D.(x﹣2)2=65.如果a是一元二次方程2x2=6x﹣4的根,则代数式a2﹣3a+2024的值为()A.2021 B.2022 C.2023 D.20246.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定7.如图,一块长16m,宽8m的矩形菜地,现要在中间铺设同样宽度的石子路,余下的部分用于种植,且种植面积为105m2.设石子路的宽度为xm,则下面所列方程正确的是()A.(16﹣x)(8﹣x)+x2=105 B.(16﹣x)(8﹣x)=105 C.(16﹣2x)(8﹣x)+x2=105 D.(16﹣2x)(8﹣x)=1058.函数y=自变量x的取值范围是()A.x≥﹣1 B.x≠2 C.x≥﹣1且x≠2 D.﹣1≤x<29.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k>﹣1 D.k>﹣1且k≠010.新冠肺炎奥密克戎变异株BA.5自2021年底出现后,目前已成为全球流行的变异株,更是近期深圳感染的主要毒株,潜伏期更短,传播力更强,传播速度更快.变异株2分钟左右进入宿主细胞,20﹣30分钟左右呈现指数复制,12﹣24小时后释放成熟的病毒颗粒,通过气溶胶等方式进行传播.若有两个人患了该新冠肺炎,经过两轮传播后共有338个人被传染,那么每轮传染中平均一个人传染几个人()A.13 B.11 C.12 D.1411.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.1212.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.6 B.7 C.8 D.9二、填空题(本题共4小题,每小题4分,共16分)13.方程(x+2)2=8,则方程的根为.14.若方程是关于x的一元二次方程,则a的值为.15.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是.16.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.三、解答题(本题共9小题,共98分)17.计算题:(1);(2)解方程:(3﹣y)2+y2=12.18.先化简,再求值:÷(m+3+),其中m是方程x2﹣2x﹣1=0的根.19.如图,在平面直角坐标系中,A(﹣4,1),B(﹣3,3),C(﹣1,2)是△ABC的顶点.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出点C1的坐标;(3)在y轴上找一点P使PA+PC最小,求出P点坐标为.20.已知方程x2﹣4x+m=0的一个根为﹣2,求方程的另一根及m的值.21.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点B开始沿边BA以1cm/s的速度向点A移动,同时点Q也从点B开始沿BC边以2cm/s的速度向点C移动,当其中一点到达A或者C时停止运动.(1)几秒后PQ长度为6cm?(2)几秒后△PBQ的面积是24平方厘米?22.已知关于x的一元二次方程x2+(2k+1)x+k2+k=0(k为常数).(1)求证:无论k取何值,方程都有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1+x2=x1•x2﹣1,求k的值.23.某扶贫单位为了提高贫困户的经济收入,购买了39m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为120m2,求鸡场的长AB和宽BC;(2)该扶贫单位想要建一个130m2的矩形养鸡场,这一想法能实现吗?请说明理由.24.“小龙虾”是我县特色农业的拳头产品,在南县被广泛养殖.2020年估计某村养殖面积有100亩,到2022年该村养殖面积达到196亩.(1)求该村这两年“小龙虾”养殖面积的平均增长率;(2)某养殖户调查发现,当“小龙虾”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克.为了推广宣传,该养殖户决定降价促销,同时减少存量,已知“小龙虾”的平均成本为12元/千克,若要确保每天获利1750元,则售价应该降低多少元?25.如图①,在△ABC中,AD⊥BC于D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G、H在AC上,设DE=x,连接BE.(1)设矩形EFGH的面积为S1,△ABE的面积为S2,令y=,求y关于x的函数解析式;(要求写出自变量的取值范围)(2)如图②,点M是(1)中得到的函数图象上的任意一点,N的坐标为(2,0),当△OMN为等腰三角形时,求点M的坐标.​

参考答案一、选择题(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列属于一元二次方程的是()A.x2﹣3x+y=0 B.x C.x2+5x=0 D.x(x2﹣4x)=3【分析】根据一元二次方程的定义逐个判断即可.解:A.方程是二元二次方程,不是一元二次方程,故本选项不符合题意;B.方程是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;C.方程是一元二次方程,故本选项符合题意;D.方程是一元三次方程,不是一元二次方程,故本选项不符合题意;故选:C.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程叫一元二次方程.2.随着贵州“村超”的火爆出圈,黔东南州榕江县搭乘“村超”快车,“超级星期六足球之夜”品牌价值日益彰显,旅游业持续升温.据初步测算,榕江县已累计接待游客50万人次,实现旅游综合收入12.41亿元这个数据用科学记数法表示为()A.12.41×108元 B.1.241×109元 C.1.241×1010元 D.1.241×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:12.41亿元=1241000000元=1.241×109元.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.把一元二次方程(x﹣1)2=3x﹣2化为一般形式,若二次项系数是1,则一次项系数和常数项分别为()A.﹣3和3 B.﹣3和1 C.﹣5和3 D.﹣5和1【分析】先把方程化为一般式得到x2﹣5x+3=0,然后根据一次项系数和常数项的定义求解.解:去括号得x2﹣2x+1=3x﹣2,移项、合并得x2﹣5x+3=0,所以一次项系数为﹣5,常数项为3.故选:C.【点评】本题考查了一元二次方程的一般式:要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.4.用配方法解一元二次方程x2﹣4x﹣2=0的过程中,配方正确的是()A.(x+2)2=2 B.(x﹣2)2=2 C.(x+2)2=6 D.(x﹣2)2=6【分析】利用解一元二次方程﹣配方法,进行计算即可解答.解:x2﹣4x﹣2=0,x2﹣4x=2,x2﹣4x+4=2+4,(x﹣2)2=6,故选:D.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握解一元二次方程﹣配方法是解题的关键.5.如果a是一元二次方程2x2=6x﹣4的根,则代数式a2﹣3a+2024的值为()A.2021 B.2022 C.2023 D.2024【分析】根据一元二次方程的解的意义可得2a2=6a﹣4,从而可得a2﹣3a=﹣2,然后代入式子中进行计算,即可解答.解:∵a是一元二次方程2x2=6x﹣4的根,∴2a2=6a﹣4,∴2a2﹣6a=﹣4,∴a2﹣3a=﹣2,∴a2﹣3a+2024=﹣2+2024=2022,故选:B.【点评】本题考查了一元二次方程的解,准确熟练地进行计算是解题的关键.6.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选:C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.7.如图,一块长16m,宽8m的矩形菜地,现要在中间铺设同样宽度的石子路,余下的部分用于种植,且种植面积为105m2.设石子路的宽度为xm,则下面所列方程正确的是()A.(16﹣x)(8﹣x)+x2=105 B.(16﹣x)(8﹣x)=105 C.(16﹣2x)(8﹣x)+x2=105 D.(16﹣2x)(8﹣x)=105【分析】设小路的宽为xm,则草坪的总长度为(16﹣x)m,总宽度为(8﹣x)m,根据题意列出方程即可求出答案.解:设小路的宽为xm,则草坪的总长度为(16﹣x)m,总宽度为(8﹣x)m,根据题意,得:(16﹣x)(8﹣x)=105.故选:B.【点评】本题考查了一元二次方程的应用,弄清楚草坪的总长度和总宽度是解题关键.8.函数y=自变量x的取值范围是()A.x≥﹣1 B.x≠2 C.x≥﹣1且x≠2 D.﹣1≤x<2【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.解:由题意得,x+1≥0,x﹣2≠0,解得,x≥﹣1且x≠2,故选:C.【点评】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.9.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k>﹣1 D.k>﹣1且k≠0【分析】根据一元二次方程的定义和判别式的意义得到k≠0且Δ=22﹣4k×(﹣1)≥0,然后求出两个不等式的公共部分即可.解:根据题意得k≠0且Δ=22﹣4k×(﹣1)≥0,解得k≥﹣1且k≠0.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.10.新冠肺炎奥密克戎变异株BA.5自2021年底出现后,目前已成为全球流行的变异株,更是近期深圳感染的主要毒株,潜伏期更短,传播力更强,传播速度更快.变异株2分钟左右进入宿主细胞,20﹣30分钟左右呈现指数复制,12﹣24小时后释放成熟的病毒颗粒,通过气溶胶等方式进行传播.若有两个人患了该新冠肺炎,经过两轮传播后共有338个人被传染,那么每轮传染中平均一个人传染几个人()A.13 B.11 C.12 D.14【分析】根据题意可得第一轮人数加第二轮人数,再加第三轮人数总数为338人,设平均每人感染x人,则列式为2(x+1)2=338.即可解答.解:设每轮传染中平均一个人传染了x个人,根据题意,得2(x+1)2=338.解得:x=12或x=﹣14(舍去).∴每轮传染中平均一个人传染了12个人,故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8 B.9 C.8或9 D.12【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.解:当等腰三角形的底边为2时,此时关于x的一元二次方程x2﹣6x+k=0的有两个相等实数根,∴Δ=36﹣4k=0,∴k=9,此时两腰长为3,∵2+3>3,∴k=9满足题意,当等腰三角形的腰长为2时,此时x=2是方程x2﹣6x+k=0的其中一根,∴4﹣12+k=0,∴k=8,此时另外一根为:x=4,∵2+2=4,∴不能组成三角形,综上所述,k=9,故选:B.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质,本题属于中等题型.12.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.6 B.7 C.8 D.9【分析】当x=0,即P在B点时,BA﹣BE=1;利用两点之间线段最短,得到PA﹣PE≤AE,得y的最大值为AE=5;在Rt△ABE中,由勾股定理求出BE的长,再根据BC=2BE求出BC的长.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则AB=t+1,∴(t+1)2+t2=25,即t2+t﹣12=0,∴(t﹣3)(t+4)=0,解得t=3或t=﹣4,由于t>0,∴t=3.∴BE=3,∵点E为BC的中点,∴BC=6.故选:A.【点评】本题考查了动点问题的函数图象,根据勾股定理求出BE的长是解题的关键.二、填空题(本题共4小题,每小题4分,共16分)13.方程(x+2)2=8,则方程的根为x=2﹣2或x=﹣2﹣2.【分析】利用直接开平方法解方程即可.解:(x+2)2=8,x+2=2或x+2=﹣2,x=2﹣2或x=﹣2﹣2,故答案为:x=2﹣2或x=﹣2﹣2.【点评】本题考查解一元二次方程,熟练掌握开平方法解一元二次方程的方法是解题的关键.14.若方程是关于x的一元二次方程,则a的值为4.【分析】利用一元二次方程的定义判断即可求出a的值.解:∵方程是关于x的一元二次方程,∴a2﹣14=2且a+4≠0,解得:a=4.故答案为:4.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.15.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是74.【分析】等量关系为:原来的两位数﹣新两位数=27,把相关数值代入计算可得各位上的数字,根据两位数的表示方法求得两位数即可.解:设原两位数个位上的数字为x,则十位上的数字为(x2﹣9).∴10(x2﹣9)+x﹣10x﹣(x2﹣9)=27,解得x1=4,x2=﹣3(不符合题意,舍去).∴x2﹣9=7,∴10(x2﹣9)+x=74.答:原两位数为74.故答案为:74.【点评】此题主要考查了一元二次方程的应用;得到两个两位数之间的等量关系是解决本题的关键;用到的知识点为:两位数=10×十位数字+个位数字.16.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.【分析】将n2+2n﹣1=0变形为_﹣1=0,据此可得m,是方程x2﹣2x﹣1=0的两根,由韦达定理可得m+=2,代入=m+1+可得.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出m,是方程x2﹣2x﹣1=0的两根及韦达定理.三、解答题(本题共9小题,共98分)17.计算题:(1);(2)解方程:(3﹣y)2+y2=12.【分析】(1)原式利用绝对值的代数意义,负整数指数幂,零指数幂,以及二次根式的运算法则计算即可;(2)方程整理后,利用公式法求出解即可.解:(1)原式=﹣8+2﹣+3﹣2﹣1=﹣6﹣;(2)方程整理得:2y2﹣6y﹣3=0,这里a=2,b=﹣6,c=﹣3,∵Δ=36+24=60>0,∴x==,解得:x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,实数的运算,零指数幂,以及二次根式的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.先化简,再求值:÷(m+3+),其中m是方程x2﹣2x﹣1=0的根.【分析】根据分式的混合运算法则把原式化简,利用因式分解法解出方程,根据分式有意义的条件得到m的值,把m的值代入计算,得到答案.解:÷(m+3+)=÷=•=.解方程x2﹣2x﹣1=0得,x1=+1,x2=﹣+1,所以m(m﹣2)=(+1)(+1﹣2)=(+1)(﹣1)=1.或m(m﹣2)=(﹣+1)(﹣+1﹣2)=(+1)(﹣1)=1.所以原式=.【点评】本题考查的是分式的化简求值、一元二次方程的解法,掌握分式的混合运算法则、因式分解法解一元二次方程的一般步骤是解题的关键.19.如图,在平面直角坐标系中,A(﹣4,1),B(﹣3,3),C(﹣1,2)是△ABC的顶点.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出点C1的坐标;(3)在y轴上找一点P使PA+PC最小,求出P点坐标为(0,).【分析】(1)根据轴对称的性质作图即可.(2)由图可得答案.(3)连接AC1,交y轴于点P,此时PA+PC最小,即可得出答案.解:(1)如图,△A1B1C1即为所求.(2)由图可得,点C1的坐标为(1,2).(3)连接AC1,交y轴于点P,此时PA+PC最小,设点P坐标为(0,m),则,解得m=,∴P点坐标为(0,).故答案为:(0,).【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.20.已知方程x2﹣4x+m=0的一个根为﹣2,求方程的另一根及m的值.【分析】把x=﹣2代入方程x2﹣4x+m=0得出4+8+m=0,求出m,得出方程x2﹣4x﹣12=0,设方程的另一个根为a,则a+(﹣2)=4,求出a即可.解:把x=﹣2代入方程x2﹣4x+m=0得:4+8+m=0,解得:m=﹣12,即方程为x2﹣4x﹣12=0,设方程的另一个根为a,则a+(﹣2)=4,即得:a=6,即方程的另一根为6,m=﹣12.【点评】本题考查了根与系数的关系和一元二方程的解,能熟记根与系数的关系的内容是解此题的关键,已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个根为x1和x2,则x1+x2=﹣,x1•x2=.21.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点B开始沿边BA以1cm/s的速度向点A移动,同时点Q也从点B开始沿BC边以2cm/s的速度向点C移动,当其中一点到达A或者C时停止运动.(1)几秒后PQ长度为6cm?(2)几秒后△PBQ的面积是24平方厘米?【分析】设t秒后△PBQ的面积等于24平方厘米,分别表示出线段PB和线段BQ的长,然后根据△PBQ的面积为24平方厘米列出方程求得时间即可.解:(1)设x秒后PQ长度为6cm,PQ=解得:t1=﹣(不合题意舍去),t2=.答:秒后PQ长度为6cm,(2)设t秒后△PBQ的面积等于24平方厘米,根据题意得:×2t×t=24,解得:t1=﹣2(不合题意舍去),t2=2.答:2秒后△PBQ的面积等于24平方厘米.【点评】本题考查了一元二次方程的应用,能够表示出线段PB和QB的长是解答本题的关键.22.已知关于x的一元二次方程x2+(2k+1)x+k2+k=0(k为常数).(1)求证:无论k取何值,方程都有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1+x2=x1•x2﹣1,求k的值.【分析】(1)根据根的判别式得出Δ,据此可得答案;(2)根据根与系数的关系得出x1+x2=﹣(2k+1),x1x2=k2+k,代入x1+x2=x1x2﹣1得出关于k的方程,解之可得答案.【解答】(1)证明:∵Δ=(2k+1)2﹣4×1×(k2+k)=4k2+4k+1﹣4k2﹣4k=1>0,∴无论k取何值,方程都有两个不相等的实数根;(2)解:由根与系数的关系得出:x1+x2=﹣(2k+1),x1x2=k2+k,由x1+x2=x1•x2﹣1,得:﹣(2k+1)=k2+k﹣1,解得:k=0或﹣3,∴k的值为0或﹣3.【点评】本题主要考查根与系数的关系、根的判别式,解题的关键是掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.23.某扶贫单位为了提高贫困户的经济收入,购买了39m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为120m2,求鸡场的长AB和宽BC;(2)该扶贫单位想要建一个130m2的矩形养鸡场,这一想法能实现吗?请说明理由.【分析】(1)设BC=xm,则可表示出长AB,由面积关系即可列出方程,解方程即可.(2)设BC=xm,则可表示出长AB,由面积关系即可列出方程,根据方程是否有解或方程的解是否符合题意,即可作出判断.解:(1)设BC=xm,则AB=(39﹣3x)m,由题意得:x(39﹣3x)=120,整理得:x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,39﹣3x=24>15,不符合题意;当x=8时,39﹣3x=15,符合题意;答:鸡场的长AB和宽BC分别为15m与8m.(2)设BC=xm,则AB=(39﹣3x)m,由题意得:x(39﹣3x)=130,整理得:3x2﹣39x+130=0,Δ=(﹣39)2﹣4×3×130=1521﹣1560<0,方程无实数解;所以想法不能实现.【点评】本题考查了一元二次方程的应用,正确列出方程是解题的关键.24.“小龙虾”是我县特色农业的拳头产品,在南县被广泛养殖.2020年估计某村养殖面积有100亩,到2022年该村养殖面积达到196亩.(1)求该村这两年“小龙虾”养殖面积的平均增长率;(2)某养殖户调查发现,当“小龙虾”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克.为了推广宣传,该养殖户决定降价促销,同时减少存量,已知“小龙虾”的平均成本为12元/千克,若要确保每天获利1750元,则售价应该降低多少元?【分析】(1)设平均增长率为x,则根据a(1+x)n=b,即可列出方程.其中,a=100,n=2,b=196;(2)设售价降低m元,则每天的数量为(200+50m)千克,根据总利润=单利×数量,即可列出方程,因为减少存量,则取较大的解即可.解:(1)设平均增长率为x,100(1+x)2=196,1+x=±1.4,x1=﹣2.4(舍),x2=0.4,答:平均增长率为40%.(2)设售价降低m元,(20﹣12﹣m)(200+50m)=1750,m2﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论