版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17页(共21页)八年级上册《第11章三角形》单元测试卷一、选择题1.(3分)若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定2.(3分)能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线3.(3分)下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cm C.5cm,8cm,5cm D.2cm,7cm,5cm4.(3分)三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75° B.90° C.105° D.120°5.(3分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米7.(3分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360° B.540° C.720° D.900°8.(3分)如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15° B.20° C.25° D.30°9.(3分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°10.(3分)如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个 B.4个 C.3个 D.2个二、填空题11.(3分)若等腰三角形的两边长分别为3cm和8cm,则它的周长是.12.(3分)三角形三边长分别为3,2a﹣1,4.则a的取值范围是.13.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=.14.(3分)在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=.15.(3分)一个n边形的每个内角都为144°,则边数n为.16.(3分)如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三、解答题17.(8分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?18.(8分)如图,在△ABC中,按要求画图.(1)画△ABC的角平分线AD.(2)画△ABC的BC边上的高AE.(3)画△ABC的AB边上的中线CF.19.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.20.(8分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.21.(10分)如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.22.(10分)【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A=度,∠P=度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.
新人教版八年级上册《第11章三角形》单元测试卷参考答案与试题解析一、选择题1.(3分)若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定【分析】直接利用三角形的三边关系进而得出答案.【解答】解:∵三角形两边长分别是4、5,∴第三边c的范围是:5﹣4<c<4+5,则1<c<9.故选:A.【点评】此题主要考查了三角形三边关系,正确正确三边关系是解题关键.2.(3分)能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.3.(3分)下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cm C.5cm,8cm,5cm D.2cm,7cm,5cm【分析】根据三角形两边之和大于第三边判断即可.【解答】解:5cm+2cm<8cm,A不能摆成三角形;5cm+8cm=13cm,B不能摆成三角形;5cm+5cm>8cm,C能摆成三角形;2cm+5cm=7cm,D不能摆成三角形;故选:C.【点评】本题考查的是三角形的三边关系,三角形三边关系定理:三角形两边之和大于第三边.4.(3分)三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75° B.90° C.105° D.120°【分析】由一个三角形三个内角的度数之比为2:3:7,利用三角形的内角和定理,可求得这个三角形的最大角的度数,继而求得答案.【解答】解:∵一个三角形三个内角的度数之比为2:3:7,∴这个三角形的最大角为:180°×=105°.故选:C.【点评】此题考查了三角形的内角和定理.此题依据三角形内角和定理求得三角形的最大角是关键.5.(3分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.6.(3分)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米 B.110米 C.120米 D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.7.(3分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360° B.540° C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.8.(3分)如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15° B.20° C.25° D.30°【分析】利用角平分线的性质计算.【解答】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.【点评】本题综合考查平分线的性质、三角形外角的性质、三角形内角和等知识点.9.(3分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.10.(3分)如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个 B.4个 C.3个 D.2个【分析】利用角平分线的性质结合平行线的性质分别得出∠DAE=∠B,∠CAE=∠C,∠B+∠BAE=180°,进而分别求得答案.【解答】解:∵AE平分∠CAD,∴∠DAE=∠CAE,故①正确,∵AE∥BC,∴∠DAE=∠B,∠CAE=∠C,∠B+∠BAE=180°,故②③正确,由①得:∠B=∠C,∠C+∠BAE=180°,故④⑤正确;故选:A.【点评】此题考查了平行线的性质与角平分线的定义,此题比较简单,解题的关键是注意掌握两直线平行,同位角相等,两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.二、填空题11.(3分)若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.(3分)三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.13.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=101°.【分析】根据两直线平行,同位角相等可得∠B=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵DE∥BC,∴∠B=∠1=57°,由三角形的外角性质得,∠2=∠A+∠B=44°+57°=101°.故答案为:101°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.(3分)在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=115°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故答案为:115°.【点评】本题考查了三角形的角平分线的定义,三角形的内角和定理,整理思想的利用比较关键.15.(3分)一个n边形的每个内角都为144°,则边数n为10.【分析】根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:由题意得,(n﹣2)•180°=144°•n,解得n=10.故答案为:10.【点评】本题考查了多边形的内角与外角,熟记内角和公式并列出方程是解题的关键.16.(3分)如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是50°.【分析】过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【解答】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,根据三等分,∠MBC+∠MCB=(∠ABC+∠ACB)=×120°=80°,在△BMC中,∠BMC=180°﹣(∠MBC+∠MCB)=180°﹣80°=100°,∴∠BMN=×100°=50°,故答案为:50°.【点评】本题考查了三角形的内角和定理,角平分线的性质与判定,作辅助线,判断出MN平分∠BMC是解题的关键,注意整体思想的利用.三、解答题17.(8分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?【分析】首先设外角为x°,则内角为3x°,根据内角与外角是邻补角的关系可得x+3x=180,再解方程可得外角度数,然后再用外角和除以外角度数可得边数.【解答】解:设外角为x°,则内角为3x°,由题意得:x+3x=180,解得:x=45,360°÷45°=8,答:这个正多边形为八边形.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形的内角与外角是邻补角的关系.18.(8分)如图,在△ABC中,按要求画图.(1)画△ABC的角平分线AD.(2)画△ABC的BC边上的高AE.(3)画△ABC的AB边上的中线CF.【分析】(1)画△ABC的角平分线AD即可;(2)画△ABC的BC边上的高AE即可;(3)画△ABC的AB边上的中线CF即可.【解答】解:如图,(1)AD即为所求;(2)AE即为所求;(3)CF即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是掌握三角形的角平分线、中线和高的作法.19.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.20.(8分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.【分析】先分别求出∠ABC和∠BAC的度数,再根据三角形内角和定理求出∠C度数即可.【解答】解:∵根据题意知:BM∥AN,∠NAB=57°,∴∠MBA=∠NAB=57°,∵C处在B处的北偏东82°方向,∴∠ABC=82°﹣57°=25°,∵B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,∴∠BAC=57°+15°=72°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣72°﹣25°=83°.【点评】本题考查了方向角和三角形内角和定理、平行线的性质等知识点,能求出∠ABC的度数是解此题的关键.21.(10分)如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.【分析】根据高、角平分线的定义以及三角形内角和定理计算即可.【解答】解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.【点评】本题考查的是三角形内角和定理,掌握三角形的内角和等于180°是解题的关键.22.(10分)【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A=50度,∠P=115度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.【分析】(1)依据三角形内角和定理进行计算即可;(2)依据BP、CP分别平分∠ABC、∠ACB,可得,,再根据三角形内角和定理,即可得到结论;(3)依据∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,可得∠CBQ=90°﹣∠ABC,∠BCQ=90°﹣∠ACB,再根据三角形内角和定理,即可得到结论.【解答】解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.【点评】本题考查了三角形内角和定理,角平分线定义,三角形外角性质的应用,能正确运用定理进行推理是解此题的关键.
考点卡片1.方向角方向角是从正北或正南方向到目标方向所形成的小于90°的角(1)方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方向角以正南或正北方向作方向角的始边,另一边则表示对象所处的方向的射线.2.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.3.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.4.平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.5.三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形的主要线段:角平分线、中线、高.(4)三角形具有稳定性.6.三角形的角平分线、中线和高(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.7.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.8.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.9.三角形内角和定理(1)三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑工程劳务分包合同履约保证金范本
- 2025年度企业并购贷款合同范本(含尽职调查)
- 2025年度电子商务平台股东股权转让标准合同
- 2025年度工地装修材料定制设计与买卖合同
- 2025年度超高层建筑工程地勘劳务安全责任合同
- 2025年度建筑工程施工安全监理合同规范文本
- 2025年度开发商与购房者装配式住宅买卖合同样本
- 2025年度特色水果种植基地承包管理协议书
- 2025年度货物公路运输合同风险评估与预警协议
- 二零二五年度教育培训讲师专业认证服务协议
- 校本课程《生活中的化学》教案
- 宝典三猿金钱录
- 安徽凌玮新材料科技有限公司年产2万吨超细二氧化硅气凝胶系列产品项目环境影响报告书
- 聚合物粘弹性
- 建筑工程施工现场安全资料管理规程解读
- 华银铝项目氧化铝系统总体投料试车方案
- 2023年卫生院岗位大练兵大比武竞赛活动实施方案
- 2023年浙江省初中学生化学竞赛初赛试卷
- 辽海版小学五年级美术下册全套课件
- 专题7阅读理解之文化艺术类-备战205高考英语6年真题分项版精解精析原卷
- 2022年广东省10月自考艺术概论00504试题及答案
评论
0/150
提交评论