新人教版小学数学六年级下册第五单元《数学广角》教材分析_第1页
新人教版小学数学六年级下册第五单元《数学广角》教材分析_第2页
新人教版小学数学六年级下册第五单元《数学广角》教材分析_第3页
新人教版小学数学六年级下册第五单元《数学广角》教材分析_第4页
新人教版小学数学六年级下册第五单元《数学广角》教材分析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六下第五单元《数学广角》整理课件教学内容:抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。整理课件在数学问题中有一类与“存在性”有关的问题。例如,任意13人中,至少有两人的出生月份相同。任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。“抽屉原理”的理论本身并不复杂,甚至可以说是显而易见的。例如,要把三个苹果放进两个抽屉,至少有一个抽屉里有两个苹果。这样的道理对于小学生来说,也是很容易理解的。但“抽屉原理”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。因此,“抽屉原理”在数论、集合论、组合论中都得到了广泛的应用。整理课件最简单的“抽屉原理”:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。例2描述了“抽屉原理”更为一般的形式:把多于kn个物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。“抽屉原理”的具体应用。整理课件教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2.通过“抽屉原理”的灵活应用感受数学的魅力。整理课件【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。整理课件教学建议

1.应让学生初步经历“数学证明”的过程。可引导学生用直观的方式对某一具体现象进行“就事论事”式的解释,鼓励学生借助学具、实物操作或画草图的方式进行“说理”。2.应有意识地培养学生的“模型”思想。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。(什么是“待分的东西”,什么是“抽屉”,要用几个“抽屉”)

3.要适当把握教学要求。“抽屉原理”本身或许并不复杂,但它的应用广泛且灵活多变,因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。整理课件1.放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流。2.教师也应给予适当的指导。例如,要使学生明确,这里只需解决存在性问题就可以了。3.教学时应有意识地让学生理解“抽屉问题”的“一般化模型”,使学生逐步学会运用一般性的数学方法来思考问题,得出一般性的结论:

只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔

只要铅笔数比文具盒的数量多,这个结论都是成立的整理课件1.操作:3枝铅笔放进2个盒子里(3,0)

(2,1)不管怎么放,总有一个盒子里至少有2枝笔2.操作:4枝铅笔放进3个盒子里(4,0,0)(3,1,0)(2,2,0)(2,1,1)不管怎么放,总有一个盒子里至少有2枝笔3.师:我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?生:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。这样分,只分一次就能确定总有一个盒子至少有几枝笔了?4.师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。关注“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。整理课件1.鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。数据很大时,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。2.引导学生总结归纳这一类“抽屉问题”的一般规律,要把某一数量(奇数)的书放进2个抽屉,只要用这个数除以2,总有一个抽屉至少放进数量比商多1的书。学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子。3.注意纠偏。整理课件1.出示题目,留给学生思考的空间,师巡视了解各种情况。2.学生汇报。生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。3.5÷2=2(本)……1(本)(商加1)7÷2=3(本)……1(本)(商加1)9÷2=4(本)……1(本)(商加1)师:观察板书你能发现什么?生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。4.师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?引发争论。师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。交流、说理活动:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。5.师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。整理课件学情与教材分析

例题3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。应该把什么看成抽屉,要分放的东西是什么。学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点。而且,题中不同颜色球的个数,很容易给学生造成干扰。因此教学时,教师要允许学生借助实物操作等直观方式进行猜测、验证。并在此基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。整理课件1.想一想,摸一摸。请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。【学情预设:学生有的可能会猜测“只摸2个球能保证这2个球同色”;有的由于受到题目中“4个红球和4个蓝球”这个条件的干扰,可能会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”…对于前一种想法,只要举出一个反例就可以推翻这种猜测,如两个球正好是一红一蓝时,就不能满足条件。对于后一种想法,学生虽然找错了“抽屉”和“抽屉”的个数,但是教师还是应给予一定的鼓励。因为这种想法说明学生已自觉地把“摸球问题”与“抽屉问题”联系起来了,这对后面找出摸球的规律以及弄清本题与“抽屉问题”的联系非常有帮助。】整理课件2.汇报,比较各种想法,寻找能保证摸出2个同色球的最少次数,达成统一认识。即:本题中,要想摸出的球一定有2个同色的,最少要摸出3个球。【学情预设:虽然猜测之初,学生中可能会有这样那样的想法,但经过动手操作及同伴交流,学生对于本题“要想摸出的球一定有2个同色的,最少要摸出3个球”这个结论不难达成共识】3.想一想,在反思中学习推理。师:同学们,为什么至少摸出3个球就一定能保证摸出的球中有两个是同色的?请学生先想一想,再和同桌说一说,最后全班交流。【学情预设:如果学生在理解时出现比较大的困难,可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。】整理课件4.深入探究,沟通联系师:例题3和“抽屉问题”有联系吗?请学生先独立思考一会,再在小组内讨论,最后全班交流。【设计意图:在实际问题和“抽屉问题”之间架起一座桥梁并不是一件容易的事。因此,教师应有意识地引导学生朝这个方向思考,慢慢去感悟。逐步引导学生把具体问题转化为“抽屉问题”,并找出这里的“抽屉”是什么,“抽屉”有几个。例如,在本题中,“同色”就意味着“同一抽屉”,一共有红、蓝两种颜色的球,就可以把两种“颜色”看成两个“抽屉”。】师:既然例题3和“抽屉问题”有联系,那么,解决例题3的问题,有没有其它的方法?能否用前面学过的“抽屉问题”的规律来帮忙解决?请学生先和同桌讨论,再全班交流。【设计意图:应用前面所学的“抽屉原理”进行反向推理。根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”,就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少要比抽屉数多1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。”】师:请同学们反过来思考一下,至少摸出5个球,就一定能保证摸出的球中有几个是同色的?整理课件第1题,把4种花色当作4个抽屉。第2题,相当于把41环分到5个抽屉。第3题,4根小棒。第4题,把两种颜色当作两个抽屉,把正方体6个面当作物体,至少有3个面要涂上相同的颜色。整理课件[经典例题]

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日?

【例2】任意4个自然数,其中至少有两个数的差是3的倍数。为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。

整理课件【例4】一个布袋中有35个同样大小的球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,根据抽屉原理2,()/3=3……1,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

提示:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论