版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
稀有气体知识点名称“noblegases”在十九世纪被化学家发现以来,由于深入理解其性质而多次改名。原本它们被称为稀有气体(raregases),因为化学家认为它们是很罕见的。不过,这种说法只适用其中部分元素,并非所有都很少见。例如氩气(Ar,argon)在地球大气层的含量占0.9%,胜过二氧化碳;而氦气(He,helium)在地球大气层的含量确实很少,但在宇宙却是相当充沛,它占有25%,仅次于氢。所以化学家又改称为惰性气体(又称钝气,inertgases),表示它们的反应性很低,不曾在自然中出现化合物过。对于那些早期需借由化合物来寻找元素的科学家,这些元素是比较难以寻找的。不过,最近的研究指出他们是可以和其他元素结合成化合物(此即稀有气体化合物),只是需要借助人工合成的方式。故最后改称为贵重气体(又称贵族气体、贵气体或高贵气体,noblegases),这个称呼是源自德语的Edelgas所翻译来的,是由雨果•埃德曼于1898年所定名。“noble”与黄金等的“贵金属”类似,表示它们不易发生化学反应,但并非不能产生任何化合物。 在中文译名方面,各有各不同的称呼。中国大陆全国自然科学名词审定委员会于1991年公布的《化学名词》中正式规定"noblegases"称为稀有气体一词。香港教育局的《中学化学科常用英汉词汇》称“noblegases”为(高)贵气体,而一般社会仍有使用惰性气体的称呼。而台湾方面,由国立编译馆的国家教育研究院建议常称“noblegases”为惰性气体,比较少用钝气、稀有气体等,也有被称为高贵气体。稀有气体的得名稀有气体的单质在常温下为气体,且除氩气外,其余几种在大气中含量很少(尤其是氦),故得名“稀有气体”,历史上稀有气体曾被称为“惰性气体”,这是因为它们的原子最外层电子构型除氦为1s外,其余均为8电子构型(ns2np6,均为上标),而这两种构型均为稳定的结构。因此,稀有气体的化学性质很不活泼,所以过去人们曾认为他们与其他元素之间不会发生化学反应,称之为“惰性气体”。然而正是这种绝对的概念束缚了人们的思想,阻碍了对稀有气体化合物的研究。1962年,在加拿大工作的26岁的英国青年化学家N.Bartlett合成了第一个稀有气体化合物Xe[PtF6],引起了化学界的很大兴趣和重视。许多化学家竞相开展这方面的工作,先后陆续合成了多种“稀有气体化合物”,促进了稀有气体化学的发展。而“惰性气体”一名也不再符合事实,故改称稀有气体。通电的稀有气体放电管发现史
1868年,天文学家在太阳的光谱中发现一条特殊的黄色谱线D3,这和早已知道的钠元素的D1和D2两条黄色谱线不同,由此预言在太阳中可能有一种未知元素存在。后来将这种元素命名为“氦”,意为“太阳元素”[1]。20多年后,拉姆赛证实了地球上也存在氦元素。1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。他认为这种气体可能是氮气或氩气,但没有继续研究。拉姆赛知道这一实验后,用钇铀矿重复了这一实验,得到少量气体。在用光谱分析法检验该气体时,原以为能看到氩的谱线,却意外地发现一条黄线和几条微弱的其他颜色的亮线。拉姆赛把它与已知的谱线对照,没有一种同它相似。经过苦苦思索,终于想起27年前发现的太阳上的氦。氦的光谱正是黄线,如果这两条黄线能够重合,那么钇铀矿中放出的气体应是太阳元素氦了。拉姆赛十分谨慎,请当时英国最著名的光谱专家克鲁克斯帮助检验,证实拉姆赛所得的未知气体即为“太阳元素”气体。1895年3月,拉姆赛在《化学新闻》上首先发表了在地球上发现氦的简报,同年在英国化学年会上正式宣布这一发现。后来,人们在大气中、水中、天然气中、石油气中以及铀和外的矿石中,甚至在陨石中也发现了氦。1902年,德米特里•门捷列夫接受了氦和氩元素的发现,并这些稀有气体纳入他的元素排列之内,分类为第0族,而元素周期表即从该排列演变而来⑵。拉姆齐继续使用分馏法把液态空气分离成不同的成分以寻找其他的稀有气体。他于1898年发现了三种新元素:氪、氖和氙。“氪”源自希腊语“KpunT(krupt6s)”,意为“隐藏”;“氖”源自希腊语“vo(nQos)”,意为“新”;“氙”源自希腊语“Evo(xQnos)”,意为“陌生人”。氡气于1898年由弗里德里希•厄恩斯特•当发现,最初取名为镭放射物,但当时并未列为稀有气体⑶。直到1904年才发现它的特性与其他稀有气体相似。1904年,瑞利和拉姆齐分别获得诺贝尔物理学奖和化学奖,以表彰他们在稀有气体领域的发现⑷。瑞典皇家科学院主席西德布洛姆致词说:“即使前人未能确认该族中任何一个元素,却依然能发现一个新的元素族,这是在化学历史上独一无二的,对科学发展有本质上的特殊意义。[4]”稀有气体的发现有助于对原子结构一般理解的发展。在1895年,法国化学家亨利圣瓦桑尝试进行氟(电负性最高的元素)与氩(稀有气体)之间的反应,但没有成功。直到20世纪末,科学家仍无法制备出氩的化合物,但这些尝试有助于发展新的原子结构理论。由这些实验结果,丹麦物理学家尼尔斯•玻尔在1913年提出,在原子中的电子以电子层形式围绕原子核排列,除了氦气以外的所有稀有气体元素的最外层的电子层总是包含8个电子。1916年,吉尔伯特•牛顿・路易斯制定了八隅体规则,指出最外电子层上有8个电子是任何原子最稳定的排布;此电子排布使它们不会与其他元素发生反应,因为它们不需要更多的电子以填满其最外层电子层。但到了1962年,尼尔•巴特利特发现了首个稀有气体化合物六氟合伯酸氙。其他稀有气体化合物随后陆续被发现:在1962年发现了氡的化合物二氟化氡;并于1963年发现氪的化合物二氟化氪。2000年,第一种稳定的氩化合物氟氩化氢(HArF)在40K(-233.2°C)下成功制备。⑸1998年12月,俄罗斯杜布纳的联合核研究所的科学家以钙原子轰击钚来产生114号元素的单一原子,后来被命名为Fl。初步化学实验已显示该元素可能是第一种超重元素,尽管它位于元素周期表的第14族,却有着的稀有气体特性。2006
年10月,联合核研究所与美国劳伦斯利福摩尔国家实验室的科学家成功地以钙原子轰击锎的方法,人工合成了Uuo,它是18族的第七个元素[6]化合物芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物一一氟氩化氢,分子式为HArF。这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了。惰性气体可广泛应用于工业、医疗、光学应用等领域,合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术。在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目。因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为“惰性气体元素”。在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。1962年,加拿大化学家首次合成了氙和氟的化合物。此后,氡和氪各自的化合物也出现了。原子越小,电子所受约束越强,元素的“惰性”也越强,因此合成氦、氖和氩的化合物更加困难。赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢。它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢。科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物。自19世纪末以来,稀有气体元素不能生成热力学稳定化合物的结论给科学家人为地划定了一个禁区,致使绝大多数化学家不愿再涉猎这一被认为是荒凉贫瘠的不毛之地,关于稀有气体化学性质的研究被忽略了。尽管如此,仍有少数化学家试图合成稀有气体化合物。1932年,前苏联的阿因托波夫皿.R.Antropoff)曾报道,他在液体空气冷却器内,用放电法使氪与氯、漠反应,制得了较氯易挥发的暗红色物质,并认为是氪的卤化物。但当有人采用他的方法重复实验时却未获成功。阿因托波夫就此否定了自己的报道,认为所谓氪的卤化物实际上是氧化氮和卤化氢,并非氪的卤化物。1933年,美国著名化学家鲍林(L.Pauling)通过对离子半径的计算,曾预言可以制得六氟化氙(XeF6)、六氟化氪(KrF6)、氙酸及其盐。扬斯特(D.M.Younst)受阿因托波夫的第一个报道和鲍林预言的启发,用紫外线照射和放电法试图合成氟化氙和氯化氙,均未成功。他在放电法合成氟化氙的实验中将氟和氙按一定比例混合后,在铜电极间施以30000伏的电压,进行火花放电,但未能检验出氟化氙的生成。扬斯特由于对传统观念心有余悸,没有坚持继续进行实验,使一个极有希望的方法半途而废。一系列的失败,致使在以后的30多年中很少有人再涉足这一领域。令人遗憾的是,到了1961年,鲍林也否定了自己原来的预言,认为“氙在化学上是完全不反应的,它无论如何都不能生成通常含有共价键或离子键化合物的能力”。历史的发展颇具戏剧性,就在鲍林否定其预言的第二年,第一个稀有气体化合物 六氟合铂酸氙(XePtF6)竟奇迹般地出现了,并以它独特的经历和风姿震惊了整个化学界,标志着稀有气体化学的建立,开创了稀有气体化学研究的崭新领域。
在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究。自1960年以来,文献上报道了数种新的伯族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强。巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:O2+PtF6一O2PtF6这是人类第一次制得O+2的盐,证明PtF6是能够氧化氧分子的强氧化剂。巴特列特头脑机敏,善于联想类比和推理。他考虑到O2的第一电离能是1175.7千焦/摩尔,氙的第一电离能是1175.5千焦/摩尔,比氧分子的第一电离能还略低,既然O2可以被PtF6氧化,那么氙也应能被PtF6氧化。他同时还计算了晶格能,若生成XePtF6,其晶格能只比O2PtF6小41.84千焦/摩尔。这说明XePtF6一旦生成,也应能稳定存在。于是巴特列特根据以上推论,仿照合成O2PtF6的方法,将PtF6的蒸气与等摩尔的氙混合,在室温下竟然轻而易举地得到了一种橙黄色固体XePtF6:Xe+PtF6一XePtF6该化合物在室温下稳定,其蒸气压很低。它不溶于非极性溶剂四氯化碳,这说明它可能是离子型化合物。它在真空中加热可以升华,遇水则迅速水解,并逸出气体:2XePtF6+6H2O-2Xef+O2f+2PtO2+12HF这样,具有历史意义的第一个含有化学键的“惰性”气体化合物诞生了,从而很好地证明了巴特列特的正确设想。1962年6月,巴特列特在英国ProceedingsoftheChemicalSociety杂志上发表了一篇重要短文,正式向化学界公布了自己的实验报告,一下震动了整个化学界。持续70年之久的关于稀有气体在化学上完全惰性的传统说法,首先从实践上被推翻了。化学家们开始改变了原来的观念,摘掉了冠以稀有气体头上名不副实的“惰性”的帽子,拆除了人为的樊篱,很快形成了一个合成和研究新的稀有气体化合物的热潮,开辟了一个稀有气体化学的新天地。认识上的障碍一旦拆除,更多的稀有气体化合物很快被陆续合成出来。就在同年8月,柯拉森(H.H.Classen)在加热加压的情况下,以1:5体积比混合氙与氟时,直接得到了XeF4,年底又制得了XeF2和XeF6。氙的氟化物的直接合成成功,更加激发了化学家合成稀有气体化合物的热情。在此后不长的时间内,人们相继又合成了一系列不同价态的氙氟化合物、氙氟氧化物、氙氧酸盐等,并对其物理化学性质、分子结构和化学键本质进行了广泛的研究和探讨,从而大大丰富和拓宽了稀有气体化学的研究领域。到1963年初,关于氪和氡的一些化合物也陆续被合成出来了。至今,人们已经合成出了数以百计的稀有气体化合物,但却仅限于原子序数较大的氪、氙、氡,至于原子序数较小的氦、氖,仍未制得它们的化合物,但有人已从理论上预测了合成这些化合物的可能性。1963年,皮门陶(Pimentaw)等人根据HeF2的电子排布与稳定的HF-2离子相似这一点,提出了利用核反应制备HeF2的3种设想:(1)制取TF-2,再利用氚〔3H(T)〕的B衰变合成HeF2:TF-2—HeF2+B;(2)用热中子辐射LiF,生成HeF2;(3)直接用a粒子轰击固态氟而产生HeF2。但毛姆等人则认为,HeF2和HF-2的电子排布虽然相似,但HF-2可以看成是一个H-跟两个F原子作用成键,H-的电离
能仅为22.44千焦/摩尔,而He的电离能却高达801.5千焦/摩尔,因此是否存在HeF2,在理论上是值得怀疑的,氦能否形成化合物,至今仍是个不解之谜。稀有气体化合物的制成1962年6月,英国青年化学家巴特利特发表了合成Xe(PtF6)的简报,使科学界大为震惊,从此打破了人为划定的不存在“稀有气体元素”化合物的禁区,使“稀有气体元素”化学得到了飞跃的发展。至今,已合成了四百多种“稀有体元素”化合物,其中有的并不需要精密的实验设备,如氙和氟的混和气体只需要放在日光下照射,即可生成二氟化氙。稳定的氙碳化合物首次制成1989年,联邦德国多特蒙德大学首次制备出一种稳定的氙碳化合物。这种化合物是在乙腊液体中和0°C下,使二氟化氙和三(五氯酚氟代苯基)甲硼烷反应生成的。研究人员已用核磁共振装置研究了这种含氙碳键化合物的结构。低温下稳定的氪氮化合物制备成功。1988年,加拿大麦克马斯特大学的施陶贝根宣称,他首次制备并表征了含有氪一氮键的化合物。他用二氟化氪(KrF2)和质子化的氢氤酸盐进行反应,把这两种化合物放入氢氟酸中,并以液氮冷却。然后让反应温度缓慢上升,使这两种化合物溶解,并发生相互作用,在约-60C时生成含有氪一氮键的白色固体化合物。这种氪一氮化合物与其他氙同系物相比是相当不稳定的,它似乎不能在高于-50C的温度下存在在一定条件下,Xe可与F2发生反应,生成三种稳定的Xe的氟化物。XeF2.XeF4和XeF6:Xe+nF2一XeF2n(n=1.2.3)其中XeF4在碱性溶液中迅速分解.6XeF4+12H2O一2XeO3+4Xe+24HF+3O2XeF6不完全水解,产物为XeOF4XeF6+3H2O一XeFO4+6HFXe的含氧化物除了XeO3,XeOF4外还有XeF4,HXeO4-和(XeO6)4-等XeO3+OH-一HXeO4-2HXeO4-+2OH-一(XeO6)4-+Xe+O2+2H2O三氧化氙【XeO3】是无色、易潮解、易爆炸的晶状固体,可溶于水,在水中以分子状态存在。它在中性和微酸性环境中很稳定,但在碱性环境中它以HXeO4形式存在,且HXeO4不稳定,除氧化分解以外,还发生歧化反应:2HXeO4(aq)+2OH(aq)=XeO6(aq)+Xe(g)+O2(g)+2H2O(l)WXeO3/Xe=+2.10VWHXeO4-/Xe=+1.24V且XeO3还原产物总是氙,因为没有稳定的低价态氧化氙。氙金属化合物三氟化金与氙和原子态氢反应,生成了一种新的黑色晶体,经检测发现这种晶体的成分是新的化合物四氙化金。氯是卤族元素元为惰性气体,在正常情况下氯和氙是不会发生反应的,在自然界中也不存在氯和氙的化合物,但在高压和强电场作用下氯可以接受氙的一个电子,形成氯化氙分子,氯化氙不稳定维持的时间很短,很快会解离成为氯和氙,这中不稳定的分子称为准分子,由不稳定的氯化氙准分子受激发而发出的波长为308nm的紫外线激光。
氟化氙分三种:二氟化氙,四氟化氙和六氟化氙。他们均为无色晶体,其中二氟化氙熔点为129°C,四氟化氙为113°C,六氟化氙为89°C°XeF2在碱溶液中易被还原成Xe。XeF4则在水中岐化为XeO3+Xe。XeF6则水解成XeO3。氟化氙能被氢气还原为Xe。XeF2能将Cl-变为Cl2,BrO3-变为BrO4-。都可以用氙和氟直接化合生成,也可做氟化剂。易升华,前二者气态无色,后者黄色。化学活泼性、氧化性和氟化性依次递增。如XeF2和XeF4不和SiO2反应,而XeF6最终反应生成XeO3。XeF2可用作有机物的氟化剂,选择性较好,产率较高。XeF4及XeF6和某些有机物接触会引起燃烧或爆炸。改性的XeF6为有前途的氟化剂。XeF2可用作氧化铀的氟化剂,以分离铀235。用生成氟化氙除去核反应堆裂变产物放射性氙的小型试验已获成功。用135XeF4作核反应堆的减速剂正在试验。控制不同的温度,压力等条件,可由氙和氟直接反应制得上述三种氟化氙。还可通过放电、辐射、光化学反应等制备。理化性质空气中约含0.94%(体积百分)的稀有气体,其中绝大部分是氩气。稀有气体都是无色、无臭、无味的,微溶于水,溶解度随分子量的增加而增大。稀有气体的分子都是由单虹组成的,它们的熔点和沸点都很低,随着原子量的增加,熔点和沸点增大。它们在低温时都可以液化。稀有气体原子的最外层电子结构为ns2np6(氦为1s2),是最稳定的结构,因此,在通常条件下不与其它元素作用,长期以来被认为是化学性质极不活泼,不能形成化合物的惰性元素。除氦以外,稀有气体原子的最外电子层都是由充满的ns和np轨道组成的,它们都具有稳定的8电子构型。稀有气体的电子亲合势都接近于零,与其它元素相比较,它们都有很高的电离势。因此,稀有气体原子在一般条件下不容易得到或失去电子而形成化学键。表现出化学性质很不活泼,不仅很难与其它元素化合,而且自身也是以单原子分子的形式存在,原子之间仅存在着微弱的范德华力(主要是色散力)。直到1962年,英国化学家N.巴利特才利用强氧化剂PtF6与氙作用,制得了第一种惰性气体的化合物Xe[PtF6],以后又陆续合成了其他惰性气体化合物,并将它的名称改为稀有气体。空气是制取稀有气体的主要原料,通过液态空气分级蒸馏,可得稀有气体混合物,再用活性炭低温选择吸附法,就可以将稀有气体分离开来。第0族包括氦、氖、氩、氪、氙和氡共六种元素,统称为稀有气体。稀有气体在高压电场下
稀有气体元素的基本性质列于下表中。性质HeNeArKr Xe Rn颜色无色无色无色无色无色无色光谱颜色(放电管中)黄红蓝亮白色蓝绿-气体密度(g/L)0.17850.9002!1.78093.7085.851 9.73熔点(K)0.9524.584.0116.6161.2202.2沸点(K)4.2527.387.5120.3166.1208.2溶解度(mol/L,293K)13.814.737.973 110.9 -临界温度(K)5.2544.45153.15210.65289.75377.65气化热(kJ/mol)*:在2.6MPa下0.091.86.39.7 13.7 18.0性质HeNeAr Kr Xe Rn原子序数21018 36 54 86原子量4.0020.1839.9583.80131.3222.0价电子结构1s2s2p3s3p4s4p5s5p6s6p原子(范得华)半径(pm)122160191 198 - -第I电离势(kJ/mol)237220811521 1351 1170 1037第II电离势(kJ/mol)525039522666 2350 2046 -恒压热容Cp(J/K・mol)20.7920.7920.7920.7920.7920.79热容商Cp/Cv1.651.641.66 1.69 1.67 -应用随着工业生产和科学技术的发展,稀有气体越来越广泛地应用在工业、医学、尖端科学技术以至日常生活里。利用稀有气体极不活动的化学性质,有的生产部门常用它们来作保护气。例如,在焊接精密零件或镁、铝等活泼金属,以及制造半导体晶体管的过程中,常用氩作保护气。原子能反应堆的核燃料钚,在空气里也会迅速氧化,也需要在氩气保护下进行机械加工。电灯泡里充氩气可以减少钨丝的气化和防止钨丝氧化,以延长灯泡的使用寿命。稀有气体通电时会发光。世界上第一盏霓虹灯是填充界气制成的(霓虹灯的英文原意是“氖灯”)。氖灯射出的红光,在空气里透射力很强,可以穿过浓雾。因此,氖灯常用在机场、港口、水陆交通线的灯标上。灯管里充入氩气或氦气,通电时分别发出浅蓝色或淡红色光。有的灯管里充入了氖、氩、氦、水银蒸气等四种气体(也有三种或两种的)的混合物。由于各种气体的相对含量不伺,便制得五光十色的各种霓虹灯。人们常用的荧光灯,是在灯管里充入少量水银和氩气,并在内壁涂荧光物质(如卤磷酸钙)而制成的。通电时,管内因水银蒸气放电而产生紫外线,激发荧光物质,使它发出近似日光的可见光,所以又叫做日光灯。利用稀有气体可以制成多种混合气体激光器。氦-氖激光器就是其中之一。氦氖混合气体被密封在一个特制的石英管中,在外界高频振荡器的激励下,混合气体的原子间发生非弹性碰撞,被激发的原子之间发生能量传递,进而产生电子跃迁,并发出与跃迁相对应的受激辐射波,近红外光。氦-氖激
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京市2024年度城市供水排水工程合同
- 二零二四年高档住宅区供暖工程合同2篇
- 简易的材料购销合同
- 2024年度居间介绍工程采购合同3篇
- 商业演出合同范本
- 高铁护坡施工设备租赁2024年度合同
- 《事故树分析方法》课件
- 《市政道路施工概述》课件
- 个人承包合同出租车范本
- 财务人员管理报告范文
- 2024-2034年全球及中国核辐射行业市场发展现状及发展前景研究报告
- 微测网题库完整版行测
- 借款协议书格式模板示例
- 国家开放大学《管理英语4》边学边练Unit 5-8(答案全)
- 作家普希金课件
- 封山育林工程 投标方案(技术方案)
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2024年刑法知识考试题库附参考答案【满分必刷】
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 肺功能进修总结汇报
- 《燃烧性能测试》课件-第二节 氧指数测试
评论
0/150
提交评论