版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE2017学年江西省抚州市崇仁二中九年级(上)第一次月考数学试卷一、选择题(每小题3分,共18分)1.下列各式是一元二次方程的是()A.3﹣5x2=x B.+x2﹣1=0 C.ax2+bx+c=0 D.4x﹣1=02.已知关于x的一元二次方程x2﹣x+k=0的一个根是2,则k的值是()A.﹣2 B.2 C.1 D.﹣13.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等 B.对角相等 C.对角线相等 D.对边平行5.顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形6.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S△APB+S△AOD=其中正确结论的序号是()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(每小题3分,共18分)ABCD(2)7.如果方程x2+(k﹣1)x﹣3=0的一个根是1,那么k=,另一个根x=.8.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是cm,面积是cm2.9.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=.10.如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=,AC=.11.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是度.12.如图,在矩形ABCD中,AB=3,AD=4,以对角线的一半为边依次作平行四边形,则S=,S=.三、解答题(每小题6分,共30分)13.解方程(1)(x﹣3)2=25(2)x2﹣x﹣1=0.14.解方程(1)x2﹣6x+8=0(2)x2﹣5x﹣6=0.15.已知方程x2+2x﹣1=0的两根分别是x1,x2,求的值.16.已知关于x的方程x2+(2k+1)x+k2﹣3=0有实数根,求k的取值范围.17.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?四、(每小题8分,共32分)18.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.19.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.20.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF=DF;(2)求证:AE∥BD;(3)若AB=6,AD=8,求BF的长.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?五、解答题(共1小题,满分10分)22.如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)连接AC、BF,若AE=BC,求证:四边形ABFC为矩形;(3)在(2)条件下,当△ABC再满足一个什么条件时,四边形ABFC为正方形.六、(本题12分)23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
2016-2017学年江西省抚州市崇仁二中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.下列各式是一元二次方程的是()A.3﹣5x2=x B.+x2﹣1=0 C.ax2+bx+c=0 D.4x﹣1=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误;C、方程二次项系数可能为0,故错误;D、方程未知数为1次,故错误;故选A.2.已知关于x的一元二次方程x2﹣x+k=0的一个根是2,则k的值是()A.﹣2 B.2 C.1 D.﹣1【考点】一元二次方程的解.【分析】知道方程的一根,把该根代入方程中,求出未知量k.【解答】解:由题意知,关于x的一元二次方程x2﹣x+k=0的一个根是2,故4﹣2+k=0,解得k=﹣2,故选A.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.4.下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等 B.对角相等 C.对角线相等 D.对边平行【考点】矩形的性质;平行四边形的性质.【分析】根据矩形的性质以及平行四边形的性质进行做题.【解答】解:矩形的特性是:四角相等,对角线相等.故选C.5.顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】四边形EFGH是菱形;根据矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,利用三角形中位线定理求证EF=FG=GH=EH,然后利用四条边都相等的平行四边形是菱形即可判定.【解答】解:四边形EFGH是菱形;理由如下:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=AC,EF∥AC,GH=AC,GH∥AC同理,FG=BD,FG∥BD,EH=BD,EH∥BD,∴EF=FG=GH=EH,∴四边形EFGH是菱形.故选C.6.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S△APB+S△AOD=其中正确结论的序号是()A.①②③ B.①②④ C.①③④ D.②③④【考点】四边形综合题.【分析】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;②∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项成立;③过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE===,∴BF=EF=,∴点B到直线AE的距离为.故此选项不正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.故此选项正确.∴正确的有①②④,故选B.二、填空题(每小题3分,共18分)ABCD(2)7.如果方程x2+(k﹣1)x﹣3=0的一个根是1,那么k=3,另一个根x=﹣3.【考点】根与系数的关系.【分析】可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出k值和方程的另一根.【解答】解:设方程的另一根为x1,又∵x=1,∴,解得x1=﹣3,k=3.故填空答案为k=3,x=﹣3.8.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是5cm,面积是24cm2.【考点】菱形的性质.【分析】先根据菱形的性质得AC⊥BD,OA=OC=AC=4,BO=DO=BD=3,则可利用勾股定理计算出AB=5,即得到菱形的边长为5cm,然后利用菱形的面积等于对角线乘积的一半计算菱形ABCD的面积.【解答】解:如图,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=4,BO=DO=BD=3,在Rt△ABO中,AB===5,∴菱形的边长为5cm,菱形的面积=×6×8=24(cm2).故答案为:5,24.9.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=2.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义得出m+2≠0,|m|=2,求出即可.【解答】解:∵(m+2)x|m|+3mx+1=0是关于x的一元二次方程,∴m+2≠0,|m|=2,解得:m=2,故答案为:2.10.如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=10,AC=8.【考点】勾股定理;直角三角形斜边上的中线.【分析】由直角三角形斜边上的中线性质得出AB=2CD=10,再由勾股定理求出AC即可.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD=10,由勾股定理得:AC===8;故答案为:10,8.11.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是22.5度.【考点】正方形的性质.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC==67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.12.如图,在矩形ABCD中,AB=3,AD=4,以对角线的一半为边依次作平行四边形,则S=6,S=.【考点】矩形的性质;平行四边形的性质.【分析】先证明四边形OBB1C是菱形,由菱形的面积=两条对角线长积的一半,即可得出平行四边形OBB1C的面积;由矩形的面积公式得出平行四边形A1B1C1C的面积,由菱形的面积公式得出平行四边形OB1B2C的面积即可.【解答】解:∵四边形ABCD矩形,∴OB=OC,BC=AD=4,矩形ABCD的面积=3×4=12;∵四边形OBB1C是平行四边形,OB=OC,∴四边形OBB1C是菱形,∴BA1=CA1=BC=2,∴OA1是△ABC的中位线,∴OA1=AB=,∴O1B=2OA1=3,∴平行四边形四边形OBB1C的面积=×3×4=6;故答案为:6;根据题意得:四边形A1B1C1C是矩形,∴平行四边形A1B1C1C=A1C×A1B1=2×=3;同理:平行四边形OB1B2C的面积=×2×=;故答案为:.三、解答题(每小题6分,共30分)13.解方程(1)(x﹣3)2=25(2)x2﹣x﹣1=0.【考点】解一元二次方程-公式法;解一元二次方程-直接开平方法.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)两边开方得:x﹣3=±5,解得:x1=8,x2=﹣2;(2)x2﹣x﹣1=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5,x=,x1=,x2=.14.解方程(1)x2﹣6x+8=0(2)x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】(1)先把方程左边分解,使原方程转化为x﹣2=0或x﹣4=0,然后解两个一次方程即可;(2)先把方程左边分解,使原方程转化为x﹣6=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,解得x1=2,x2=4.(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0或x+1=0,解得x1=6,x2=﹣1.15.已知方程x2+2x﹣1=0的两根分别是x1,x2,求的值.【考点】根与系数的关系.【分析】先根据根与系数的关系得出x1•x2与x1+x2的值,再代入代数式进行计算即可.【解答】解:∵方程x2+2x﹣1=0的两根分别是x1,x2,∴x1•x2=﹣1,x1+x2=﹣2,∴===﹣6.16.已知关于x的方程x2+(2k+1)x+k2﹣3=0有实数根,求k的取值范围.【考点】根的判别式.【分析】根据判别式的意义得到△=(2k+1)2﹣4(k2﹣3)≥0,然后解不等式即可.【解答】解:根据题意得△=(2k+1)2﹣4(k2﹣3)≥0,解得k≥﹣,即k的取值范围为k≥﹣.17.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【考点】一元二次方程的应用.【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【解答】解:设每千克水果应涨价x元,依题意得方程:(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.四、(每小题8分,共32分)18.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.【考点】一元二次方程的应用.【分析】(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.【解答】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x1=12,x2=28,当x=12时,较长的为40﹣12=28cm,当x=28时,较长的为40﹣28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm,由题意,得()2+()2=48,变形为:m2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm2.19.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由题意正方形ABCD的边AD=DC,在等边三角形CDE中,CE=DE,∠EDC等于∠ECD,即能证其全等.(2)根据等边三角形、等腰三角形、平行线的角度关系,可以求得∠AFB的度数.【解答】(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2)解:∵△CDE是等边三角形,∴CE=CD=DE,∵四边形ABCD是正方形∴CD=BC,∴CE=BC,∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC==75°∵AD∥BC∴∠AFB=∠EBC=75°.20.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF=DF;(2)求证:AE∥BD;(3)若AB=6,AD=8,求BF的长.【考点】翻折变换(折叠问题).【分析】(1)由翻折的性质可知∠EBD=∠CBD,由矩形的性质可知:AD∥BC,从而得到∠ADB=∠DBC,于是∠EBD=∠ADB,故此BF=DF;(2)由BE=AD,BF=FD,可知AF=EF,从而得到∠EAF=∠AEF,然后可证明∠AEF=∠EBD,从而可证明AE∥BD;(3)在△AFB中利用勾股定理可求得BF的长.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC.∴∠DBC=∠ADB.由翻折的性质可知:∠DBC=∠EBD,∴∠ADB=∠EBD.∴BF=FD.(2)∵四边形ABCD是矩形,∴AD=BC.由翻折的性质可知:BE=BC,∴AD=BE.由(1)可知:BF=DF,∴AF=EF.∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠FBD=∠FDB,∴∠AEB=∠EBD.∴AE∥BD.(3)在Rt△ABF中,设BF=FD=x,则AF=8﹣x,由勾股定理得:AB2+AF2=BF2,即62+(8﹣x)2=x2.解得:x=.∴BF的长为.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【考点】一元二次方程的应用.【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80000元.五、解答题(共1小题,满分10分)22.如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)连接AC、BF,若AE=BC,求证:四边形ABFC为矩形;(3)在(2)条件下,当△ABC再满足一个什么条件时,四边形ABFC为正方形.【考点】正方形的判定;全等三角形的判定与性质;平行四边形的性质;矩形的判定.【分析】(1)由正方形的性质得出AB∥CD,AB=CD,得出∠BAE=∠EFC,由AAS证明△ABE≌△FCE即可;(2)由全等三角形的对边相等得出AB=FC,由BE=CE,得出四边形ABFC为平行四边形,证出BC=AF,即可得出四边形ABFC是矩形;(3)由等腰三角形的三线合一性质得出AE⊥BC,得出四边形ABFC是菱形,即可得出结论四边形ABFC为正方形.【解答】(1)证明:在正方形ABCD中,AB∥CD,AB=CD,∴∠BAE=∠EFC,∵E为BC的中点,∴BE=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),(2)证明:∵△ABE≌△FCE,∴AB=FC,∵BE=CE,∴四边形ABFC为平行四边形,∵AE=EF=AF,AE=BC,∴BC=AF,∴四边形ABFC是矩形;(3)解:当△ABC为等腰三角形时,即AB=AC时,四边形ABFC为正方形;理由如下:∵AB=AC,E为BC的中点,∴AE⊥BC,∵四边形ABFC为平行四边形,∴四边形ABFC是菱形,又∵四边形ABFC是矩形,∴四边形ABFC为正方形.六、(本题12分)23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【考点】四边形综合题;角平分线的定义;平行线的性质;全等三角形的判定与性质;矩形的性质;正方形的性质.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省廉江市实验学校2025届物理高二第一学期期中复习检测试题含解析
- 2025届全国名校大联考物理高二第一学期期末联考试题含解析
- 安徽定远育才实验学校2025届物理高一第一学期期末统考试题含解析
- 藏拉萨那曲第二高级中学2025届高三物理第一学期期末检测模拟试题含解析
- 浙江省杭州市建人高复2025届高三物理第一学期期末综合测试模拟试题含解析
- 河北省衡水中学滁州分校2025届高三上物理期中学业质量监测试题含解析
- 深圳市重点中学2025届物理高三上期中质量跟踪监视模拟试题含解析
- 2025届云南省江城县第一中学物理高三第一学期期中调研试题含解析
- 2025届福建省长汀第一中学物理高一上期中综合测试模拟试题含解析
- 淮阴师范学院《水文学》2021-2022学年第一学期期末试卷
- (高清版)JTGT 3610-2019 公路路基施工技术规范
- MOOC 航空航天材料概论-南京航空航天大学 中国大学慕课答案
- 趸船总体建造方案 投标方案(技术方案)
- 个人生涯发展展示
- 生涯发展报告
- 人教版(PEP)五年级英语上册 unit 4《What can you do》A let's learn课件
- 可填充颜色的地图(世界、中国、各省份)
- 孙道荣《你不能头发蓬乱地走出我的店》阅读练习及答案
- 《颞下颌关节疾病》
- 调研报告调研过程(共7篇)
- 综合型家政服务公司运作方法和管理程序
评论
0/150
提交评论