必修2第六章从杂交育种到基因工程全章课件_第1页
必修2第六章从杂交育种到基因工程全章课件_第2页
必修2第六章从杂交育种到基因工程全章课件_第3页
必修2第六章从杂交育种到基因工程全章课件_第4页
必修2第六章从杂交育种到基因工程全章课件_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自从人类开始种植作物和饲养动物以来,就从未停止过对品种的改良。传统的方法是选择育种,通过汰劣留良的方法来选择和积累优良基因。自从孟德尔发现了遗传规律之后,人工杂交的方法被广泛应用于动植物育种。人工诱变技术的应用,使育种方法得到了较大的改进。基因工程的诞生,使人们能够按照所设计的蓝图,进行跨越种间鸿沟的基因转移,从而定向地改变生物的遗传特性,创造出新的生物类型。第6章从杂交育种到基因工程第1节杂交育种与诱变育种第2节基因工程及其应用第1节杂交育种与诱变育种本节聚焦:1、杂交育种的原理是什么?2、什么是诱变育种?3、杂交育种和诱变育种各有哪些优点和不足?

小麦高秆(D)对矮秆(d)为显性,抗锈病(T)对不抗锈病(t)为显性,现有纯合的高秆抗锈病的小麦(DDTT)和矮秆不抗锈病的小麦(ddtt),可采用哪些育种方式得到符合人类要求的优良品种?思考与讨论一:以下为同学们提供的育种方案:杂交育种单倍体育种诱变育种

杂交育种的优点是很明显的,但是在实际操作中会遇到不少困难。请从杂交后代可能出现的各种类型,以及育种时间等方面,分析杂交育种方法的不足。思考与讨论二:PDDTT高秆抗锈病×ddtt矮秆易染锈病F1DdTt高秆抗锈病F2ddTt、ddTT矮秆抗锈病自交

自交

FnddTT矮秆抗锈病∶∶∶杂交育种概念:杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。原理:基因重组优点:能集中位于不同品种中的优良性状。缺点:只能利用已有的基因组,并不能产生新的基因。杂交进程缓慢,过程繁琐。应用:杂交水稻、中国荷斯坦牛等杂交育种2004年十大感动中国人物

颁奖辞

他是一位真正的耕耘者。当他还是一个乡村教师时,已具有颠覆世界权威的胆识;当他名满天下时,却仍专注于田畴。淡薄名利,一介农夫,播撒智慧,收获富足。他毕生的梦想,就是让所有的人远离饥饿。喜看稻菽千重浪,最是风流袁隆平。

如果有一天,农民种植的水稻都换成了杂交水稻,其它品质差、产量低的水稻品种都被农民随意丢弃了,你认为结果会如何?

国家农业科研部门此时应有何为?思考与讨论三:DDTT高秆抗锈病×ddtt矮秆易染锈病DdTt高秆抗锈病DT、dT、Dt、dt花药离体培养ddTT矮秆抗锈病DT、dT、Dt、dt秋水仙素处理

单倍体

幼苗

花粉

纯合体

植株

F1

P单倍体育种γ射线PDDTT高秆抗锈病

ddTT矮秆抗锈病γ射线Pddtt矮秆不抗锈病

ddTT矮秆抗锈病或

与杂交育种相比,诱变育种有什么优点?联系基因突变的特点,谈谈诱变育种的局限性。要想克服这些局限性,可心采取什么办法?思考与讨论四:诱变育种概念:利用物理因素(如x射线,γ射线、紫外线,激光等)或化学因素(如亚硝酸、硫酸二乙酯等)处理生物,使生物发生基因突变。原理:基因突变诱变育种优点:提高变异的频率,加速育种进程。大幅度地改良某些性状。缺点:难以控制突变方向,无法将多个优良性状组合。应用:农作物育种——黑农五号大豆(产量提高16%、含油量提高2.5%)

微生物育种——青霉素

(20单位/ml→50000单位/ml)

利用太空环境研究植物生长发育和遗传变异的研究始于上世纪60年代初期,迄今已有40多年的历史。前苏联(俄罗斯)、美国空间植物学研究的主要目标,定位在以探索空间条件下植物生长发育规律,改善空间人类生存的小环境,解决宇航员的食品供给及生存安全等,这是为了将来“太空里的人类”。因而美国航空航天局于1995年建立了引力生物学中心,重点研究植物对引力的感受和反应,但其最终目标仍是开发出更加适于太空旅行的植物。而我国的太空育种则把更多的注意力投向如何利用空间环境资源,开辟选育植物优良品种的新途径,这是为了现在“地球上的人类”。因为目的的不同,导致现在有“中国已经走上太空育种的最前沿”一说。太空育种拓展视野:空间生命科学:高真空(10—8pa)微重力(10—4g)强辐射拓展视野:太空育种“神舟”三号飞船上搭载的38种共计200克神舟三号”飞船从太空带回的试管种苗“神舟”五号搭载育成的巨人南瓜甘肃种植的太空育种的蔬菜太空水稻搭载前后株系对比太空育种辣椒升载太空磨菇升载太空磨菇

太空青茄大过小孩头思考与讨论五:太空育种的食品安全吗?

方法比较杂交育种诱变育种多倍体育种单倍体育种处理原理优缺点举例请比较各种育种方式:1、假设你想培育一个作物品种,你想要的性状和不想要的性状都是由隐性基因控制的。试说明培育方法,画出遗传图解,并说明这各方法的优缺点。2、育种方式只限以上四种吗?还有什么更好的育种方式吗?请发挥你的想象力!思考与讨论六:谢谢!再见!课堂练习:P101常规育种诱变育种多倍体育种单倍体育种处理杂交用射线、激光、化学药品等处理生物用秋水仙素处理种子或幼苗花药离体培养原理通过基因重组把两亲本的优良性状组合在同一后代中用人工方法诱发基因突变,产生新性状,创造新品种或新类型抑制细胞分裂中纺锤体的形成,使染色体数目加倍后不能形成两个细胞诱导精子直接发育成植株,再用秋水仙素加倍成纯合体特点方法简便,但需较长年限方可获得纯合体加速育种的进程,大幅改良某些性状,但突变后有利个体往往不多器官大,营养物质含量高,但发育延迟,结实率低缩短育种年限,但方法复杂,成活率较低举例高杆抗病与矮杆不抗病小麦杂交产生矮杆抗病品种高产量青霉素菌株的育成三倍体西瓜、八倍体小黑麦抗病植株的育成类别杂交育种人工诱变育种单倍体育种多倍体育种基因工程育种细胞融合技术细胞核移植技术依据原理基因重组基因突变染色体组成倍减少,再加倍后得到纯种染色体组成倍增加基因是控制生物性状的基本单位基因重组、染色体变异基因重组、染色体变异常用方法杂交→自交→选种→自交辐射诱变激光诱变作物空间技术育种花药的离体培养,然后再加倍秋水仙素处理萌发的种子、幼苗转基因(DNA重组)技术将目的基因引入生物体内,培育新品种让不同生物细胞原生质融合,同种生物细胞可融合为多倍体将具备所需性状的体细胞核移植到去核卵中七种遗传育种方法的比较优点将不同个体的优良性状集中于一个体上可以提高变异的频率,加速育种进程,或大幅度地改良某些品种可以明显地缩短育种年限器官巨大,提高产量和营养成分打破物种界限,定向改变生物的性状按照人们意愿改变细胞内遗传物质或获得细胞产品且克服了远缘杂亲不亲和障碍可改良动物品种或保护濒危物种缺点时间长,须及时发现优良品种有利变异少,须大量处理实验材料技术复杂且须与杂交育种配合发育延迟,结实率低有可能引起生态危机技术难度高技术要求高举例矮秆抗锈病小麦青霉素高产菌株太空椒单倍体育种获得的矮秆抗锈病小麦三倍体无籽西瓜八倍体小黑麦产生人胰岛素的大肠肝菌、抗虫棉白菜、甘蓝、番茄、马铃薯克隆羊、鲤鲫、移核鱼第2节基因工程及其应用本节聚焦:1、什么是基因工程?2、基因工程的原理是什么?3、基因工程有哪些应用?4、转基因食品安全吗?青霉菌能产生对人类有用的抗生素——青霉素基因决定性状家蚕能够吐出蚕丝为人类利用基因决定性状豆科植物的根瘤能够固定空气中的氮基因决定性状设想一能否让禾本科的植物也能够固定空气中的氮?能否让细菌“吐出”蚕丝?设想二能否让微生物产生出人的胰岛素、干扰素等珍贵的药物?设想三定向基因改造设想

经过多年的努力,科学家于20世纪70年代创立了可以定向改造生物的新技术——基因工程。

你知道为什么能把人的基因“嫁接”到细菌上吗?你能推测出,这种基因的“嫁接”是怎么实现的吗?你能举出一些类似的、与你的生活关系很密切的例子吗?问题探讨“嫁接”了人胰岛素基因的工程菌一、基因工程的原理:1、概念:

就是按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。基因工程的别名基因拼接技术或DNA重组技术操作环境生物体外操作对象基因操作水平DNA分子水平基本过程剪切→拼接→导入→表达结果人类需要的基因产物2、基因的“剪刀”——限制性内切酶识别特定核苷酸序列,切割特定DNA切点,具特异性。并裂解磷酸二酯键。例:大肠杆菌的一种限制酶(EcoRⅠ)能识别

GAATTC序列,并在G和A之间切开。

一种限制酶只能识别一种特定的核苷酸序列,并在特定的切割点上将DNA分子切断。目前已发现的限制酶有4000多种。CTTAAGGCAATT例:EcoRI

酶切位点限制酶:从特殊的酶切位点将DNA分子切开3、基因的“针线”

——DNA连接酶连接酶的作用:

将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。连接的部位:

生成3′-5′磷酸二酯键DNA连接酶的作用过程:DNA连接酶的作用过程4、基因的运载体

——质粒或病毒作用:

将外源基因送入受体细胞。条件:

能在宿主细胞内复制并稳定地保存。具有多个限制酶切点。具有某些标记基因。种类:

质粒、噬菌体和动植物病毒。质粒①从细胞中分离出DNA①②③④⑤⑥②限制酶截取DNA片断③分离大肠杆菌中的质粒④DNA重组⑤用重组质粒转化大肠杆菌⑥培养大肠杆菌克隆大量基因基因工程过程示意图基因工程的操作步骤提取目的基因目的基因与运载体结合目的基因导入受体细胞目的基因的表达和检测再见!课堂练习:P106二、基因工程的应用:1、基因工程与作物育种2、基因工程与药物研制:三、转基因生物和转基因食品的安全性:1、基因工程与医药卫生我国生产的部分基因

工程疫苗和药物⑴基因工程药品的生产

许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。

微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。

胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。

将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!

干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。

人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。人造血液及其生产⑵基因诊断与基因治疗

运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。我国研究人员正在制备用于基因治疗的基因工程细胞

通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。2、基因工程与农牧业、食品工业

运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。生长快、耐不良环境、肉质好的转基因鱼(中国)乳汁中含有人生长激素的转基因牛(阿根廷)抗虫棉抗CMV甜椒抗虫原理?抗虫结果?3、基因工程与环境保护⑴环境监测:

基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。1t水中只有10个病毒也能被DNA探针检测出来

利用基因工程培育的“指示生物”能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。⑵环境污染治理:

基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。

通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。转基因食品看起来分外诱人餐桌上的基因转基因食品你敢吃吗?转基因食品ABC安全吗?

21世纪将是基因工程迅速发展并完善的世纪,也是它产生巨大效益的世纪!基因工程将在医疗卫生、食品工业、农牧业、环保等许多方面发挥重大的作用!再见3、基因的运输工具——运载体

要让一个从甲生物细胞内取出来的基因在乙生物体内进行表达,首先得将这个基因送到乙生物的细胞内去!能将外源基因送入细胞的工具就是运载体。

运载体必须同时满足三个要求:①能与目的基因结合;②能进入受体生物细胞并在受体生物细胞内复制并表达;③比较容易得到。

科学家发现大肠杆菌、枯草杆菌等的质粒能同时满足以上三个要求。

目前被较广泛提取使用的目的基因有:苏云金杆菌抗虫基因、人胰岛素基因、人干扰素基因、种子贮藏蛋白基因、植物抗病基因等。1、提取目的基因——将

需要的基因从供体生物

的细胞内提取出来。供体生物细胞取出DNA用限制酶剪去多余部分目的基因限制酶提取目的基因提取目的基因的方法用限制酶切断成许多片段⑴直接分离基因——鸟枪法

将供体生物的DNA用限制酶切割为许多片段,再用运载体将这些片段都运载到受体生物的不同细胞中去。只要有一个细胞获得了需要的目的基因并得以表达,基因工程就算成功了。

该法最大的缺点是带有很大的盲目性,工作量大,成功率低。且不能将真核生物的基因转移到原核生物中去。⑵人工合成基因法DNA合成仪有两种方法:

①逆转录法:以信使RNA为模板,在逆转录酶的作用下将脱氧核苷酸合成合成DNA(基因)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论