版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省湖州市实验学校2024届数学八上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20° B.40° C.50° D.70°2.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°3.如果与是同类项,则()A. B. C. D.4.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A. B.MN垂直平分C.这两个三角形的面积相等 D.直线AB,的交点不一定在MN上5.下列分式中,属于最简分式的是()A. B. C. D.6.若,则a与4的大小关系是()A.a=4 B.a>4 C.a≤4 D.a≥47.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. B. C. D.8.下列分解因式正确的是(
)A.x3﹣x=x(x2﹣1)
B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16
D.m2+m+=(m+)29.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭本月与上月相比节水情况统计表:节水量()0.20.30.40.50.6家庭数(个)12241这10个家庭节水量的平均数和中位数分别是()A.0.42和0.4 B.0.4和0.4 C.0.42和0.45 D.0.4和0.4510.若分式的值为0,则()A.x=-2 B.x=0 C.x=1 D.x=1或-211.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是()A.(4,﹣1) B.(﹣1,3) C.(﹣1,﹣1) D.(1,3)12.如图,已知,,,,则下列结论错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.14.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.15.已知,,则__________.16.化简:_________.17.=_________18.如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当______时,四边形ABEC是矩形.三、解答题(共78分)19.(8分)如图,已知△ABC的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m(直线m上各点的横坐标都为1).(1)作出△ABC关于x轴对称的图形,并写出点的坐标;(2)作出点C关于直线m对称的点,并写出点的坐标;(3)在x轴上画出点P,使PA+PC最小.20.(8分)是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.21.(8分)甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度(米)与挖掘时间(时)之间关系的部分图象.请解答下列问题:在前小时的挖掘中,甲队的挖掘速度为米/小时,乙队的挖掘速度为米/小时.①当时,求出与之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差米?22.(10分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.23.(10分)计算(1)[2a(a2b-ab2)+ab(ab-a2)]a2b(2)24.(10分)如图,是等边三角形,是的角平分线上一点,于点,线段的垂直平分线交于点,垂足为点.(1)若,求的长.(2)连接,,试判断的形状,并说明理由.25.(12分)阅读下面的计算过程:①=②=③=④上面过程中(有或无)错误,如果有错误,请写出该步的代号.写出正确的计算过程.26.如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【题目详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【题目点拨】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.2、A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【题目详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【题目点拨】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.3、C【分析】根据同类项的定义:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,列出二元一次方程组,即可得出的值.【题目详解】由题意,得解得故选:C.【题目点拨】此题主要考查对同类项的理解,熟练掌握,即可解题.4、D【分析】根据轴对称的性质逐项判断即可得.【题目详解】A、P到点A、点的距离相等正确,即,此项不符合题意;B、对称轴垂直平分任意一组对应点所连线段,因此MN垂直平分,此项不符合题意;C、由轴对称的性质得:这两个三角形的面积相等,此项不符合题意;D、直线AB,的交点一定在MN上,此项符合题意;故选:D.【题目点拨】本题考查了轴对称的性质,掌握轴对称的性质是解题的关键.5、D【解题分析】根据最简分式的概念判断即可.【题目详解】解:A.分子分母有公因式2,不是最简分式;B.的分子分母有公因式x,不是最简分式;C.的分子分母有公因式1-x,不是最简分式;D.的分子分母没有公因式,是最简分式.故选:D【题目点拨】本题考查的是最简分式,需要注意的公因式包括因数.6、D【分析】根据二次根式的性质可得a-4≥0,即可解答.【题目详解】解:由题意可知:a﹣4≥0,∴a≥4,故答案为D.【题目点拨】本题考查了二次根式的性质,掌握二次根式的非负性是解答本题的关键.7、D【分析】利用角平分线和平行的性质即可求出.【题目详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【题目点拨】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.8、D【解题分析】试题分析:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.故选D.9、C【分析】根据加权平均数的计算公式与中位数的定义即可求解.【题目详解】10个家庭节水量的平均数为=0.42;第5,6个家庭的节水量为0.4,0.5,∴中位数为0.45,故选C.【题目点拨】此题考查了加权平均数与中位数,掌握加权平均数的计算公式是解题的关键,是一道基础题.10、C【分析】要使分式的值等于0,则分子等于0,且分母不等于0.【题目详解】若分式的值为0,则x-1=0,且x+2≠0,所以,x=1,x≠-2,即:x=1.故选C【题目点拨】本题考核知识点:分式值为0的条件.解题关键点:熟记要使分式的值等于0,则分子等于0,且分母不等于0.11、D【分析】因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.【题目详解】△ABE与△ABC有一条公共边AB,当点E在AB的下边时,点E有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点E在AB的上边时,坐标为(﹣1,3);点E的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).故选:D.【题目点拨】本题主要考查了全等三角形的判定,熟练掌握相关判定定理是解题关键.12、B【分析】先根据三角形全等的判定定理证得,再根据三角形全等的性质、等腰三角形的性质可判断A、C选项,又由等腰三角形的性质、三角形的内角和定理可判断出D选项,从而可得出答案.【题目详解】,即在和中,,则A选项正确(等边对等角),则C选项正确,即又,即,则D选项正确虽然,但不能推出,则B选项错误故选:B.【题目点拨】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出是解题关键.二、填空题(每题4分,共24分)13、【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.【题目详解】设,其中为整数,,则,,原方程化为:,.,即,,为整数,、.当时,,此时,为非零实数,舍去;当时,此时.故答案为:1.1.【题目点拨】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.14、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.15、【分析】利用平方差公式对变形为,即可求解.【题目详解】∵,,∴.故答案为:.【题目点拨】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.16、1【分析】根据二次根式的性质化简即可求出结果.【题目详解】解:,故答案为:1.【题目点拨】本题主要考查了二次根式的性质,熟知是解题的关键.17、【解题分析】首先把化(1.5)2019为×()2018,再利用积的乘方计算()2018×()2018,进而可得答案.【题目详解】原式=()2018×()2018()2018.故答案为.【题目点拨】本题考查了积的乘方,关键是掌握(ab)n=anbn(n是正整数).18、1【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【题目详解】解:当∠AFC=1∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=1∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为1.【题目点拨】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.三、解答题(共78分)19、(1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A1、B1、C1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC1,与x轴交点即为点P.【题目详解】(1)如图,A1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【题目点拨】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.20、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【题目详解】(1)证明:在BE上截取,连接,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,
∴∠AEB=60-x+x=60°.
∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,
∴CE+AE=BF+FE=BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE=60°∴∠EAF=∠BAE+∠BAF=60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF=BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接,在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF=60°∴∠EAF=∠BAF+∠BAE=60°∴△AFE为等边三角形,∴EF=AE,∴CE=EF+CF=AE+BE,即AE+BE=CE;(3)在(1)的条件下,若,则AE=3,∵CE+AE=BE,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.1;在(2)的条件下,若,则AE=3,因为图②中,CE+BE=AE,而BD=BE-DE=BE-CE,所以BD不可能等于2AE;图③中,若,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.1.即CE=1.1或4.1.【题目点拨】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)10;15;(2)①;②挖掘小时或小时或小时后两工程队相距5米.【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据列出方程求解即可.【题目详解】甲队:米/小时,乙队:米/小时:故答案为:10,15;①当时,设,则,解得,当时,;②易求得:当时,,当时,;当时,由解得,1°当,,解得:,2°当,解得:,3°当,,解得:答:挖掘小时或小时或小时后,两工程队相距米.【题目点拨】本题考查了一次函数的应用,主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.22、(1)证明见解析;(2).【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得:菱形AECF的面积=EC×AB=AC×EF,进而得到EF的长.【题目详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)∵菱形AECF的面积=EC×AB=AC×EF,又∵AB=6,AC=10,EC=,∴×6=×10×EF,解得EF=.【题目点拨】考核知识点:菱形性质.理解性质是关键.23、(1);(2).【分析】(1)先计算括号内的运算,然后再计算整式除法运算,即可得到答案;(2)先通分计算括号内的运算,然后计算分式除法,即可得到答案.【题目详解】解:(1)原式===;(2)原式===;【题目点拨】本题考查了分式的混合运算,分式的化简求值,整式的运算混算,整式的化简,解题的关键是熟练掌握运算法则进行解题.24、(1);(2)是直角三角形,理由见解析.【分析】(1)由是等边三角形,是的平分线,得,结合,,即可得到答案;(2)由,得,由垂直平分线段,得,进而即可得到结论.【题目详解】(1)∵是等边三角形,是的平分线,∴,∵于点,∴,∴,∵为线段的垂直平分线,∴,∴;(2)是直角三角形.理由如下:连接、,∵是等边三角形,平分,∴,,∵,∴,∴,∵垂直平分线段,∴,∴,∴,∴是直角三角形.【题目点拨】本题主要考查等边三角形的性质定理,中垂线的性质定理以及直角三角形的判定与性质定理,掌握直角三角形中,30°角所对的直角边是斜边的一半,是解题的关键.25、有,②,过程见解析【分析】第一步通分正确,第二步少分母,这是不正确的,分母只能通过与分子约分化去.【题目详解】解:有错误;②;正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年09月山东兴业银行济南分行投资银行部相关岗位招考笔试历年参考题库附带答案详解
- 2024年09月北京/上海光大银行光大信托招考笔试历年参考题库附带答案详解
- 2025届苏州市工业园区斜塘校初中生物毕业考试模拟冲刺卷含解析
- 2024年09月2024中国农业银行青海省分行校园招聘130人笔试历年参考题库附带答案详解
- 2024年08月招商银行杭州分行社会招考笔试历年参考题库附带答案详解
- 第三章中医外科疾病病因病机
- 2024年08月兴业银行湖州长兴绿色支行招考笔试历年参考题库附带答案详解
- 2024年08月中国光大银行零售与财富管理部远程银行中心对公项目经理招聘笔试历年参考题库附带答案详解
- 2024年08月中国光大银行济南分行理财经理岗位(聊城)招聘笔试历年参考题库附带答案详解
- 2024年08月陕西/浙江2024年浙商银行总行金融科技部易企银(杭州)科技有限公司联合校园招考笔试历年参考题库附带答案详解
- 外科医生年终述职总结报告
- 儿科课件:急性细菌性脑膜炎
- 柜类家具结构设计课件
- 建设项目管理费用(财建2016504号)
- 煤炭运输安全保障措施提升运输安全保障措施
- JTGT-3833-2018-公路工程机械台班费用定额
- LDA型电动单梁起重机参数
- 保安巡逻线路图
- (完整版)聚乙烯课件
- 中国雷暴日多发区特征及雷电发展变化
- 干部业绩相关信息采集表
评论
0/150
提交评论