版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市罗湖区八年级数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列命题是真命题的是()A.在一个三角形中,至多有两个内角是钝角B.三角形的两边之和小于第三边C.在一个三角形中,至多有两个内角是锐角D.在同一平面内,垂直于同一直线的两直线平行2.下列各组中,没有公因式的一组是()A.ax-bx与by-ay B.6xy-8x2y与-4x+3C.ab-ac与ab-bc D.(a-b)3与(b-a)2y3.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1 B.3 C.3 D.4.已知图中的两个三角形全等,则等于()A. B. C. D.5.如图,在平面直角坐标系中,直线AC:y=kx+b与x轴交于点B(-2,0),与y轴交于点C,则“不等式kx+b≥0的解集”对应的图形是()A.射线BD上的点的横坐标的取值范围 B.射线BA上的点的横坐标的取值范围C.射线CD上的点的横坐标的取值范围 D.线段BC上的点的横坐标的取值范围6.如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. B. C. D.7.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积()A.4 B.6 C.16 D.558.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.49.下列图形是轴对称图形的为()A. B. C. D.10.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A的面积为()A.6 B.36 C.64 D.8二、填空题(每小题3分,共24分)11.已知,为实数,等式恒成立,则____________.12.分解因式:2x3﹣6x2+4x=__________.13.商店以每件13元的价格购进某商品100件,售出部分后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则售完这100件商品可盈利______元.14.华为手机上使用的芯片,,则用科学记数法表示为__________15.如图,中,,,,为边的垂直平分线DE上一个动点,则的周长最小值为________.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为__________.17.“角平分线上的点到角两边的距离相等”的逆命题是_____________.18.点与点关于_________对称.(填“轴”或“轴”)三、解答题(共66分)19.(10分)解方程:(1);(2);(3).20.(6分)如图,点,,,在一条直线上,,,.求证:.21.(6分)小明在作业本上写了一个代数式的正确演算结果,但不小心被墨水污染了一部分,形式如下:求被墨水污染部分“”化简后的结果;原代数式的值能等于吗?并说明理由.22.(8分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.23.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣8,4)、B(﹣7,7)、C(﹣2,2).(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)判断△ABC的形状,并说明理由.24.(8分)如图,在△ABC中,已知其周长为26㎝.(1)在△ABC中,用直尺和圆规作边AB的垂直平分线分别交AB、AC于点D,E(不写作法,但须保留作图痕迹).(2)连接EB,若AD为4㎝,求△BCE的周长.25.(10分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.26.(10分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?
参考答案一、选择题(每小题3分,共30分)1、D【分析】正确的命题是真命题,根据定义依次判断即可.【题目详解】在一个三角形中,至多有一个内角是钝角,故A不是真命题;三角形的两边之和大于第三边,故B不是真命题;在一个三角形中,至多有三个内角是锐角,故C不是真命题;在同一平面内,垂直于同一直线的两直线平行,故D是真命题,故选:D.【题目点拨】此题考查真命题的定义,正确理解真命题的定义及会判断事情的正确与否是解题的关键.2、C【分析】将每一组因式分解,找到公因式即可.【题目详解】解:A、ax-bx=(a-b)x,by-ay=(b-a)y,有公因式(a-b),故本选项错误;
B、6xy-8x2y=2xy(3-4x)与-4x+3=-(4x-3)有公因式(4x-3),故本选项错误;
C、ab-ac=a(b-c)与ab-bc=b(a-c)没有公因式,故本选项正确;
D、(a-b)3x与(b-a)2y有公因式(a-b)2,故本选项错误.
故选:C.【题目点拨】本题考查公因式,熟悉因式分解是解题关键.3、B【解题分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【题目详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.【题目点拨】本题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.4、C【分析】根据全等三角形的对应边相等和全等三角形的对应角相等,可得第二个三角形没有标注的边为a,且a和c的夹角为70°,利用三角形的内角和定理即可求出∠1.【题目详解】解:∵两个三角形全等,∴第二个三角形没有标注的边为a,且a和c的夹角为70°∴∠1=180°-70°-50°=60°故选C.【题目点拨】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等和全等三角形的对应角相等是解决此题的关键.5、A【分析】根据图象即可得出不等式kx+b≥0的解集,从而判断出结论.【题目详解】解:由图象可知:不等式kx+b≥0的解集为x≤-2∴“不等式kx+b≥0的解集”对应的图形是射线BD上的点的横坐标的取值范围故选A.【题目点拨】此题考查的是根据一次函数的图象和不等式,求自变量的取值范围,掌握利用一次函数的图象,解一元一次不等式是解决此题的关键.6、D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【题目详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+1.故选D.7、C【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【题目详解】解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sn=Sm+Sq=11+5=16,∴正方形n的面积为16,故选C.【题目点拨】本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.8、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【题目详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【题目点拨】此题主要考查了频数与频率,正确掌握频率求法是解题关键.9、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、A【分析】根据图形知道所求的A的面积即为正方形中间的直角三角形的A所在直角边的平方,然后根据勾股定理即可求解.【题目详解】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方,∴正方形A的面积=14-8=1.故选:A.【题目点拨】本题主要考查勾股树问题:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.二、填空题(每小题3分,共24分)11、-12【分析】根据多项式乘多项式的运算方法将展开,再根据恒成立,求出m的值即可.【题目详解】,根据题意:恒成立,∴,,解得:,.故答案为:.【题目点拨】本题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.12、2x(x﹣1)(x﹣2).【解题分析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.13、1.【分析】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,300)代入上式并解得k的值,即每件售价;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即可求解.【题目详解】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,1300)代入上式得:并解得:,即每件售价元;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即为:20=1.故答案为:1.【题目点拨】此题为一次函数的应用,渗透了函数与方程的思想,关键是求降价后每件的价格.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:.故答案为:.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.15、1【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点P和点E重合时,△ACP的周长最小,再结合题目中的已知条件求出AB的长即可.【题目详解】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点P和点E重合时,△ACP的周长最小,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=1cm,故答案为:1.【题目点拨】本题考查了轴对称−最短路线问题、垂直平分线的性质以及直角三角形的性质,正确确定P点的位置是解题的关键.16、【分析】根据题意以及众数和中位数的定义可得出这5个数字,然后求其平均数即可.【题目详解】解:由题意得:这五个数字为:1,2,3,8,8,
则这5个数的平均数为:(1+2+3+8+8)÷5=.
故答案为:.【题目点拨】本题考查了众数和中位数的知识,难度一般,解答本题的关键是根据题意分析出这五个数字.17、到角的两边的距离相等的点在角平分线上【分析】把一个命题的题设和结论互换即可得到其逆命题.【题目详解】“角平分线上的点到角两边的距离相等”的逆命题是“到角的两边的距离相等的点在角平分线上”.
故答案为:到角的两边的距离相等的点在角平分线上.【题目点拨】此题考查命题与定理,解题关键在于掌握如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.18、轴【解题分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【题目详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.三、解答题(共66分)19、(1);(2);(3).【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1),解得,经检验是原方程的解,(2),解得:经检验是分式方程的解.(3)5x=-3解得检验:当时,∴是原方程的解.【题目点拨】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、见解析【分析】先根据得到,由结合线段的和差可得,然后根据AAS证得,进一步可得,最后根据平行线的判定定理即可证明.【题目详解】证明:∵,∴.∵,∴BF+CF=CF+CE,即.在与中,∴,∴,∴.【题目点拨】本题主要考查了平行线的性质与判定、全等三角形的判定与性质,灵活运用全等三角形的判定方法成为解答本题的关键.21、(1);(2)原代数式的值能等于1,理由见解析.【分析】(1)设被墨水污染部分“”为A,根据题意求出A的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为1,求出x的值,再代入代数式的式子中进行验证即可.【题目详解】解:(1)设被墨水污染部分“”为A,则故化简后的结果;(2)原代数式的值能等于1,理由如下:令,解得:,经检验:是原分式方程的解,所以原代数式的值能等于1.【题目点拨】本题考查的是分式的化简求值,在解答此类问题时要注意x的取值要保证每一个分式有意义.22、证明过程见解析【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【题目详解】∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.23、(1)见解析;(2)△ABC是直角三角形,理由见解析【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用勾股定理逆定理得出答案.【题目详解】解:(1)如图:△A1B1C1即为所求;(2)△ABC是直角三角形,理由:∵AB2=12+32=10,BC2=52+52=50,AC2=22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年-2024年公司项目部负责人安全教育培训试题附答案【黄金题型】
- 立秋文化在新媒体的传播
- 《材料工程原理绪论》课件
- 《监督培训材料》课件
- 激光打标机打标软件与PLC通信稳定性的研究
- 部编版七年级历史下册期末复习专题课件2024版
- 云安全隐私保护机制-洞察分析
- 营养产业可持续发展-洞察分析
- 外观模式可维护性-洞察分析
- 稀有金属国际市场动态-洞察分析
- 【8地星球期末】安徽省合肥市包河区智育联盟校2023-2024学年八年级上学期期末地理试题(含解析)
- 2024-2025学年冀人版科学四年级上册期末测试卷(含答案)
- 【8物(科)期末】合肥市庐阳区2023-2024学年八年级上学期期末质量检测物理试卷
- 国家安全知识教育
- 2024-2030年中国停车场建设行业发展趋势投资策略研究报告
- 蓝军战略课件
- 物业管理重难点分析及解决措施
- 北京邮电大学《数据库系统》2022-2023学年第一学期期末试卷
- 湖北省黄冈市2023-2024学年高一上学期期末考试化学试题(含答案)
- 中国HDMI高清线行业市场动态分析及未来趋势研判报告
- 物流公司安全生产监督检查管理制度
评论
0/150
提交评论