江西省宜春九中学2024届八年级数学第一学期期末调研试题含解析_第1页
江西省宜春九中学2024届八年级数学第一学期期末调研试题含解析_第2页
江西省宜春九中学2024届八年级数学第一学期期末调研试题含解析_第3页
江西省宜春九中学2024届八年级数学第一学期期末调研试题含解析_第4页
江西省宜春九中学2024届八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春九中学2024届八年级数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.我们规定:表示不超过的最大整数,例如:,,,则关于和的二元一次方程组的解为()A. B. C. D.2.如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是()A.甲 B.乙 C.丙 D.丁3.若一个三角形的两边长分别为5和8,则第三边长可能是()A.13 B.10 C.3 D.24.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82分,82分,245分2,190分2.那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定5.在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.46.已知,,则的值为()A.6 B. C.0 D.17.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.8.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或09.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数10.如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是()A.1 B. C.ab D.a211.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是()A. B. C. D.12.如图所示的两个三角形全等,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:_____(填“>“或“<”).14.已知点A(−2,0),点P是直线y=34x上的一个动点,当以A,O,P为顶点的三角形面积是3时,点P15.某体校篮球班21名学生的身高如下表:身高(cm)180185187190193人数(名)46542则该篮球班21名学生身高的中位数是_____.16.当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.17.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.18.一副三角板如图所示叠放在一起,则图中∠ABC=__.三、解答题(共78分)19.(8分)计算(1)(2)(3)(4)20.(8分)阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.21.(8分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?22.(10分)我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案:方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成.根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.23.(10分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.24.(10分)解不等式组:,并把它的解集在数轴上表示出来.25.(12分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.26.如图,在中,∠CAB=90°,AC=AB,射线AM与CB交于H点,分别过C点、B点作CF⊥AM,BE⊥AM,垂足分别为F点和E点.(1)若AF=4,AE=1,请求出AB的长;(2)若D点是BC中点,连结FD,求证:BE=DF+CF.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据的意义可得,和均为整数,两方程相减可求出,,将代入第二个方程可求出x.【题目详解】解:,∵表示不超过的最大整数,∴,和均为整数,∴x为整数,即,∴①-②得:,∴,,将代入②得:,∴,故选:A.【题目点拨】本题考查了新定义以及解二元一次方程组,正确理解的意义是解题的关键.2、B【分析】根据全等三角形的判定定理作出正确的选择即可.【题目详解】解:A、△ABC和甲所示三角形根据SA无法判定它们全等,故本选项错误;B、△ABC和乙所示三角形根据SAS可判定它们全等,故本选项正确;C、△ABC和丙所示三角形根据SA无法判定它们全等,故本选项错误;D、△ABC和丁所示三角形根据AA无法判定它们全等,故本选项错误;故选:B.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、B【分析】根据三角形的三边关系,求出第三边的长的取值范围,即可得出结论.【题目详解】解:∵三角形两边的长分别是5和8,∴8-5<第三边的长<8+5解得:3<第三边的长<13由各选项可知,符合此范围的选项只有B故选B.【题目点拨】此题考查的是根据三角形两边的长,求第三边的长的取值范围,掌握三角形的三边关系是解决此题的关键.4、B【分析】根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.【题目详解】由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选B.【题目点拨】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【解题分析】试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:△ABD的面积为9,△ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质6、D【分析】根据整式乘法法则去括号,再把已知式子的值代入即可.【题目详解】∵,,∴原式.故选:D.7、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【题目详解】解:如图,在AC上截取AE=AN,连接BE,

∵∠BAC的平分线交BC于点D,

∴∠EAM=∠NAM,

在△AME与△AMN中,∴△AME≌△AMN(SAS),

∴ME=MN.

∴BM+MN=BM+ME≥BE,

当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,

∵,∠BAC=45°,此时△ABE为等腰直角三角形,

∴BE=,即BE取最小值为,

∴BM+MN的最小值是.

故选:B.【题目点拨】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.8、D【分析】根据立方根的定义得到立方根等于本身的数.【题目详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【题目点拨】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.9、B【分析】直接利用轴对称图形的性质画出对称轴即可.【题目详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:.【题目点拨】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10、B【解题分析】根据分式的基本性质对选项逐一判断即可.【题目详解】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选B.【题目点拨】本题考查了分式的基本性质:分式的分子与分母同时乘以或除以同一个不为零的数,分式的值不变.11、B【解题分析】对称轴是两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后重合.根据轴对称图形的概念,A、C、D都是轴对称图形,B不是轴对称图形,故选B12、A【分析】根据全等三角形对应角相等解答即可.【题目详解】解:在△ABC中,∠B=180-58°-72°=50°,∵两个三角形全等,

∴∠1=∠B=50°.

故选A.【题目点拨】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.二、填空题(每题4分,共24分)13、<【分析】方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断即可.【题目详解】解:由图可得,甲10次跳远成绩离散程度小,而乙10次跳远成绩离散程度大,∴<,故答案为:<.【题目点拨】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、(4,3)或(-4,-3)【解题分析】依据点P是直线y=34x上的一个动点,可设P(x,34x),再根据以A,O,P为顶点的三角形面积是3,即可得到x的值,进而得出点【题目详解】∵点P是直线y=34x上的一个动点,

∴可设P(x,34x),

∵以A,O,P为顶点的三角形面积是3,

∴12×AO×|34x|=3,

即12×2×|34x|=3,

解得x=±4,

∴P(4,3)或(-4,-3),

故答案是:(4,【题目点拨】考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.15、187cm【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】解:按从小到大的顺序排列,第11个数是187cm,故中位数是187cm.故答案为:187cm.【题目点拨】本题考查中位数的定义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16、3【分析】先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.【题目详解】因为当时,分式无意义,所以,解得:,因为当时,分式的值为零,所以,解得:,所以故答案为:3.【题目点拨】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.17、【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【题目详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【题目点拨】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.18、75度【解题分析】解:∵∠BAC=45°,∠BCA=60°,∴∠ABC=180°-∠BAC-∠BCA=180°-45°-60°=75°.故答案为75°.三、解答题(共78分)19、(1);(2);(3);(4)【分析】(1)先化简二次根式,然后合并同类项,即可得到答案.(2)利用完全平方公式和平方差公式进行计算,然后合并同类项即可;(3)先去括号,然后移项,合并同类项,系数化为1,即可得到答案;(4)先去分母,去括号,然后移项,合并同类项,系数化为1,即可得到答案;【题目详解】解:(1)==;(2)==;(3),∴,∴,∴;(4),∴,∴,∴.【题目点拨】本题考查了实数的混合运算,二次根式的混合运算,以及解一元一次不等式,解题的关键是熟练掌握运算法则进行计算.20、(1);(2);加减.【分析】逐步分析解题步骤,即可找出错误的地方;本解法采用了加减消元法进行求解.【题目详解】第一步中,①,得,③等式右边没有2,应该为③第二步中,②③,得,应该为,,根据题意,得此解法是加减消元法;故答案为:(1);(2);加减.【题目点拨】此题主要考查利用加减消元法解二元一次方程组,熟练掌握,即可解题.21、限行期间这路公交车每天运行50车次.【分析】设限行期间这路公交车每天运行x车次,则原来运行车次,根据“平均每车次运送乘客与原来的数量基本相同”列出分式方程,求解即可.【题目详解】解:设限行期间这路公交车每天运行x车次,则原来运行车次,根据题意可得:,解得:,经检验得是该分式方程的解,答:限行期间这路公交车每天运行50车次.【题目点拨】本题考查分式方程的实际应用,根据题意列出分式方程并求解是解题的关键,需要注意的是求出分式方程的解之后一定要验根.22、方案三最节省工程费用,理由见解析.【分析】设工程如期完成需天,则甲工程队单独完成需天,乙工程队单独完成需天,依题意可列方程,可求的值,然后分别算出三种方案的价格进行比较即可.【题目详解】设工程如期完成需天,则甲工程队单独完成需天,乙工程队单独完成需天,依题意可列方程或解得:经检验是方程的根∴工程如期完成需20天,甲工程队单独完成需20天,乙工程队单独完成需25天,在工期不耽误的情况下,可选择方案一或方案三若选择方案一,需工程款万元若选择方案三,需工程款万元故选择方案(3).【题目点拨】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.23、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【题目详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD=,∴BP=BD﹣PD=;②当点F在点C的右侧时,P’和F’分别对应图2中的P和F,如图3所示,则∠CAF=∠CAF',∵BD⊥AC,∴∴∠APD=∠AP'D,∴△是等腰三角形∴AP=AP',PD=P'D=,∴BP=BP'+P'P=;综上所述,线段BP的长为或.【题目点拨】本题考查了三角形的综合问题,掌握同旁内角互补两直线平行、等腰直角三角形的性质以及判定、勾股定理、全等三角形的性质以及判定是解题的关键.24、,数轴图见解析.【分析】先分别求出不等式①和②的解,再找出两个解的公共部分即可得出不等式组的解集,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论