




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市江阴市南菁高级中学2024届八年级数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.正比例函数()的函数值随着增大而减小,则一次函数的图象大致是()A. B.C. D.2.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是()A.5m B.10m C.15m D.20m3.20190等于()A.1 B.2 C.2019 D.04.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.5.点(,)在第二象限,则的值可能为()A.2 B.1 C.0 D.6.下列图案中,不是轴对称图形的是()A. B. C. D.7.下列命题中为假命题的是()A.无限不循环小数是无理数 B.代数式的最小值是1C.若,则 D.有三个角和两条边分别相等的两个三角形一定全等8.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°9.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.10.下列图形中,对称轴的条数最多的图形是()A. B. C. D.11.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B. C.或 D.或12.若等腰△ABC的周长为20,AB=8,则该等腰三角形的腰长为().A.8 B.6 C.4 D.8或6二、填空题(每题4分,共24分)13.已知点P(3,a)关于y轴的对称点为(b,2),则a+b=_______.14.己知点,,点在轴上运动,当的值最小时,点的坐标为___________.15.当x=______________时,分式的值是0?16.如果最简二次根式与是同类二次根式,那么a=________.17.已知:x2+16x﹣k是完全平方式,则k=_____.18.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.三、解答题(共78分)19.(8分)在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是.(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.20.(8分)第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.21.(8分)如图,在四边形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的边AB上的高,且DE=4,求△ABC的边AB上的高.22.(10分)如图,点在上,和都是等边三角形.猜想:三条线段之间的关系,并说明理由.23.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC,点D,E分别在边AC,BC上,CD=CE,连接AE,点F,H,G分别为DE,AE,AB的中点连接FH,HG(1)观察猜想图1中,线段FH与GH的数量关系是,位置关系是(2)探究证明:把△CDE绕点C顺时针方向旋转到图2的位置,连接AD,AE,BE判断△FHG的形状,并说明理由(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若CD=4,AC=8,请直接写出△FHG面积的最大值24.(10分)如图,在中,,,平分,延长至,使.(1)求证:;(2)连接,试判断的形状,并说明理由.25.(12分)计算:;26.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.模型应用:(1)如图1,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l1.求l1的函数表达式.(1)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,1a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数的图像经过一、三象限,且与y轴的正半轴相交.【题目详解】解:正比例函数()的函数值随着增大而减小.k<0.一次函数的一次项系数大于0,常数项大于0.一次函数的图像经过一、三象限,且与y轴的正半轴相交.故选:B.【题目点拨】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.2、C【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.【题目详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).故选C.【题目点拨】本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.3、A【分析】任意一个非零数的零次幂都等于1,据此可得结论.【题目详解】20190等于1,故选A.【题目点拨】本题主要考查了零指数幂,任意一个非零数的零次幂都等于1.4、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【题目详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【题目点拨】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.5、A【解题分析】根据第二象限内点的纵坐标是正数求解即可.【题目详解】解:∵点(,)在第二象限,∴,即,∴只有2符合题意,故选:A..【题目点拨】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项符合题意;
C、是轴对称图形,故本选项不符合题意;
D、是轴对称图形,故本选项不符合题意.
故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【题目详解】解:A.无限不循环小数是无理数,故本选项是真命题;B.代数式中根据二次根式有意义的条件可得解得:∵和的值都随x的增大而增大∴当x=2时,的值最小,最小值是1,故本选项是真命题;C.若,将不等式的两边同时乘a2,则,故本选项是真命题;D.有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D.【题目点拨】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.8、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【题目详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【题目点拨】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.9、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【题目详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【题目点拨】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.10、A【解题分析】依次判断各图像的对称轴条数比较即可【题目详解】解:A、圆有无数条对称轴,故此选项正确;B、此图形有1条对称轴,故此选项错误;C、矩形有2条对称轴,故此选项错误;D、有1条对称轴,故此选项错误;故选:A.【题目点拨】熟练掌握对称轴概念是解决本题的关键,难度较小11、C【分析】题目给出等腰三角形有一条边长为4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】解:当4是腰长时,底边=14-4×2=6,此时4,4,6三边能够组成三角形,所以其腰长为4;
当4为底边长时,腰长为×(14-4)=5,
此时4、5、5能够组成三角形,
所以其腰长为5,
故选:C.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12、D【分析】AB=8可能是腰,也可能是底边,分类讨论,结合等腰三角形的两条腰相等计算出三边,并用三角形三边关系检验即可.【题目详解】解:若AB=8是腰,则底长为20-8-8=4,三边为4、8、8,能组成三角形,此时腰长为8;若AB=8是底,则腰长为(20-8)÷2=6,三边为6、6、8,能组成三角形,此时腰长为6;综述所述:腰长为8或6.故选:D.【题目点拨】本题考查等腰三角形的性质和三角形三边的关系,分类讨论是关键.二、填空题(每题4分,共24分)13、-1【解题分析】∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=−3,∴a+b=2+(−3)=−1.故答案为−1.14、(1,0)【分析】作P点关于x轴对称点P₁,根据轴对称的性质PM=P₁M,MP+MQ的最小值可以转化为QP₁的最小值,再求出QP₁所在的直线的解析式,即可求出直线与x轴的交点,即为M点.【题目详解】如图所示,作P点关于x轴对称点P₁,∵P点坐标为(0,1)∴P₁点坐标(0,﹣1),PM=P₁M连接P₁Q,则P₁Q与x轴的交点应满足QM+PM的最小值,即为点M设P₁Q所在的直线的解析式为y=kx+b把P₁(0,﹣1),Q(5,4)代入解析式得:解得:∴y=x-1当y=0时,x=1∴点M坐标是(1,0)故答案为(1,0)【题目点拨】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.15、-1【解题分析】由题意得,解之得.16、1【分析】根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.【题目详解】∵最简二次根式与是同类二次根式∴1+a=4a-2解得:a=1故答案为:1.【题目点拨】本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.17、﹣1【解题分析】利用完全平方公式的结构特征判断即可得到k的值.【题目详解】解:∵x2+16x﹣k是完全平方式,∴﹣k=1,∴k=﹣1.故答案为﹣1【题目点拨】本题考查完全平方式,熟练掌握完全平方公式的特征是解题关键.18、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【题目详解】解:根据题意,得;故答案为:.【题目点拨】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.三、解答题(共78分)19、(1)1<AD<7;(2)①2<EF<6;②CE⊥ED,理由见解析【分析】(1)在△ABE中,根据三角形的三边关系定理即可得出结果;(2)①延长ED到点N,使,连接CN、FN,由SAS证得,得出,由等腰三角形的性质得出,在△CFN中,根据三角形的三边关系定理即可得出结果;②延长CE与DA的延长线交于点G,易证DG∥BC,得出,由ASA证得,得出,即可证得,由,根据等腰三角形的性质可得出.【题目详解】(1)在△ABE中,由三角形的三边关系定理得:,即,即故答案为:;(2)①如图②,延长ED到点N,使,连接CN、FN∵点D是BC边上的中点在△NDC和△EDB中,是等腰三角形,在△CFN中,由三角形的三边关系定理得:,即;②;理由如下:如图③,延长CE与DA的延长线交于点G∵点E是AB中点在△GAE和△CBE中,,即.(等腰三角形的三线合一)【题目点拨】本题考查了三角形全等的判定定理与性质、三角形的三边关系定理、等腰三角形的判定与性质等知识点,较难的是题(2)②,通过作辅助线,构造全等三角形是解题关键.20、(1)9,9;(2)乙运动员第5次的成绩是8环;(3)应选乙运动员去参加比赛,理由见解析.【解题分析】(1)根据众数和中位数的定义分别进行解答即可得出答案;
(2)先算出甲运动员5次的总成绩,再根据甲、乙两名运动员前5箭的平均成绩相同,即可求出乙运动员第5次的成绩;
(3)根据方差公式先求出甲和乙的方差,再根据方差的意义即可得出答案.【题目详解】(1)∵9环出现了两次,出现的次数最多,则甲运动员前5箭射击成绩的众数是9环;
把这些数从小到大排列为:5,7,9,9,10,最中间的数是9,则中位数是9环;
故答案为9,9;(2),∵甲、乙两名运动员前5箭的平均成绩相同,∴.解得.(或)∴乙运动员第5次的成绩是8环.(3)应选乙运动员去参加比赛.理由:∵(环),(环),∴,.∵,∴应选乙运动员去参加比赛.【题目点拨】本题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.21、△ABC的边AB上的高为4.1.【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出△ABC是直角三角形,再求出面积,进一步得到△ABC的边AB上的高即可.【题目详解】∵DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,由勾股定理,得AE=.同理:在Rt△BDE中,由勾股定理得:BE=1,∴AB=2+1=10,在△ABC中,由AB=10,AC=6,BC=1,得:AB2=AC2+BC2,∴△ABC是直角三角形,设△ABC的AB边上的高为h,则×AB×h=AC×BC,即:10h=6×1,∴h=4.1,∴△ABC的边AB上的高为4.1.【题目点拨】本题考查了三角形的高的问题,掌握勾股定理以及勾股定理逆定理是解题的关键.22、AD=BD+CD.理由见解析【分析】首先证明△ABE≌△CBD,进而得到DC=AE,再由AD=AE+ED利用等量代换AD=BD+CD.【题目详解】解:BD+CD=AD;
∵△ABC和△BDE都是等边三角形,
∴AB=AC,EB=DB=ED,∠ABC=∠EBD=60°,
∴∠ABC-∠EBC=∠EBD-∠EBC,
即∠ABE=∠CBD,
在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),
∴DC=AE,
∵AD=AE+ED,
∴AD=BD+CD.【题目点拨】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定与性质.23、(1)FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形,理由见解析;(3)2【分析】(1)直接利用三角形的中位线定理得出FH=GH,再借助三角形的外角的性质即可得出∠FHG=90°,即可得出结论;(2)由题意可证△CAD≌△CBE,可得∠CAD=∠CBE,AD=BE,根据三角形中位线定理,可证HG=HF,HF∥AD,HG∥BE,根据角的数量关系可求∠GHF=90°,即可证△FGH是等腰直角三角形;(3)由题意可得S△HGF最大=HG2,HG最大时,△FGH面积最大,点D在AC的延长线上,即可求出△FGH面积的最大值.【题目详解】解:(1)∵AC=BC,CD=CE,∴AD=BE,∵点F是DE的中点,点H是AE的中点,∴FH=AD,∵点G是AB的中点,点H是AE的中点,∴GH=BE,∴FH=GH,∵点F是DE的中点,点H是AE的中点,∴FH∥AD,∴∠FHE=∠CAE∵点G是AB的中点,点H是AE的中点,∴GH∥BE,∴∠AGH=∠B,∵∠C=90°,AC=BC,∴∠BAC=∠B=45°,∵∠EGH=∠B+∠BAE,∴∠FHG=∠FHE+∠EHG=∠CAE+∠B+∠BAE=∠B+∠BAC=90°,∴FH⊥HG,故答案为:FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形理由:由旋转知,∠ACD=∠BCE,∵AC=BC,CD=CE,∴△CAD≌△CBE(SAS),∴∠CAD=∠CBE,AD=BE,由三角形的中位线得,HG=BE,HF=AD,∴HG=HF,∴△FGH是等腰三角形,由三角形的中位线得,HG∥BE,∴∠AGH=∠ABE,由三角形的中位线得,HF∥AD,∴∠FHE=∠DAE,∵∠EHG=∠BAE+∠AGH=∠BAE+∠ABE,∴∠GHF=∠FHE+∠EHG=∠DAE+∠BAE+∠ABE=∠BAD+∠ABE=∠BAC+∠CAD+∠ABC﹣∠CBE=∠CBA+∠CAB,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∴∠GHF=90°,∴△FGH是等腰直角三角形;(3)由(2)知,△FGH是等腰直角三角形,HG=HF=AD,∵S△HGF=HG2,∴HG最大时,△FGH面积最大,∴点D在AC的延长线上,∵CD=4,AC=8∴AD=AC+CD=12,∴HG=×12=1.∴S△PGF最大=HG2=2.【题目点拨】此题是几何变换综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,三角形的中位线定理,判断出HG⊥FH是解本题的关键.24、(1)见解析;(2)等边三角形,理由见解析.【分析】(1)由直角三角形的性质和角平分线得出∠DAB=∠ABC,得出DA=DB,再由线段垂直平分线的性质得出DE=DA,即可得出结论;(2)由线段垂直平分线的性质得出BA=BE,再由∠CAB=60°,即可得出△ABE是等边三角形.【题目详解】解:(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;(2)△ABE是等边三角形;理由如下:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.【题目点拨】本题考查了等边三角形的判定方法、线段垂直平分线的性质、等腰三角形的判定等知识.解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.25、8x+29【分析】先乘除去括号,再加减;主要环节是根据乘法公式展开括号.【题目详解】解:原式==【题目点拨】本题考查了整式的混合运算,主要涉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施设备维护管理制度
- 设计食堂进出管理制度
- 诊所人员培训管理制度
- 诊所熬药日常管理制度
- 试剂耗材节约管理制度
- 财务资金规范管理制度
- 财富管理平台管理制度
- 货物搬运装卸管理制度
- 货物配送薪酬管理制度
- 货车安全培训管理制度
- 【课件】无脊椎动物+第2课时课件-2024-2025学年人教版生物七年级上册
- 2025年凉山州昭觉县选聘社区工作者题库带答案分析
- 非法倾倒处置固体废物整治实施方案
- 2025合同范本电子产品购销合同
- 2025国开《调剂学(本)》形考任务1234答案
- 2025年通信工程与技术考试试卷及答案
- 2025年员工持股平台合伙协议
- JG/T 100-1999塔式起重机操作使用规程
- 2024-2025学年下学期初中道德与法治七年级期末复习试卷(含答案)
- 防范和打击非法金融活动竞赛试题库500题(含答案)
- 2025连云港师范高等专科学校辅导员考试试题及答案
评论
0/150
提交评论