




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
时间:TIME\@"yyyy'年'M'月'd'日'"2022年3月29日学海无涯页码:第1-页共1页室温多道次ECAP变形对7075铝合金组织性能及沉淀相分布的影响1Introduction
Aluminiumalloysarewidelyusedinaerospaceengineering,marinevehiclesandmilitaryapplicationsduetotheirhighspecificstrength,lowdensityandeasyprocessing.Moreover,thesealloysarethedrivingforcebehindtheglobaldevelopmentofmakingobjectsanddevicesmorelightweight[1-5].Atpresent,theresearchanddevelopmentofaluminiumalloyshavebecomeakeydevelopmenttargetfordefencescienceandtechnology[6-7].Amongstthesealloys,7075aluminiumalloyisoneofthestrongestalloysforcommercialuseandhashighutilisationvalueasastructuralmaterial.Withthedevelopmentofthemanufacturingindustry,thereisnowarequirementfortraditional7075aluminiumalloystoexhibitplasticity.
Finegrainstrengtheningisoneoftheeffectivemeansbywhichtoimprovethepropertiesofmetallicmaterials,asrepresentedbyHall-Petchtheory[8-11]:
σy=σ0+k/d12
(1)
wheredisthegraindiameter;σ0isthefrictionalforcethatactsonthedislocation;σyistheyieldlimitofthematerialandkisaconstant.Usingtheaboveequation,itcanbeseenthatthestrengthofamaterialcanbeimprovedbyrefiningitsgrains.However,therearesomelimitationstothisthatwhenthegrainsarerefinedtoclosetothephysicallimitofthedislocationitself,theaboveequationisnotapplicable.Severeplasticdeformation(SPD)isfavoredbyresearchersasauniquedeformationmethodwithcontrollablemicrostructurecharacteristics,andcanbeperformedatroomorlowtemperaturetoobtainamaterialthatexhibitsafinegrainstructure.Iftheamountofdeformationisincreased,superfinegrainmaterialscanbeobtained.Equal-channelangularpressing(ECAP)isaneffectiveSPDmethodthatobtainsbulksubmicronandnanomaterialsandisconsideredtobethemostpromisingdeformationprocessinSPDprocessingtechnology,withtheadvantagesofstabledeformation,multi-passprocessing,andproductionoflargebulkfine-grainedmetallicmaterialscomparedtootherprocesses[12-15].DuringtheECAPdeformationprocess,thematerialispassedthroughtwoequalcross-sectionalpipemoldswithacertainanglebythetopforce,duringwhichpuresheardeformationoccurstobreakthecoarsecrystalsintofinegrains.
Todate,someprogresshasbeenreportedontheECAPdeformationof7075aluminiumalloy.ZHAOetal[16]studiedtherelationshipbetweentheprecipitationbehaviouroftheprecipitationphaseandthemechanicalpropertiesofthe7075aluminiumalloyafterECAPdeformationbysolidsolutiontreatmentat480℃for5handECAPdeformationat250℃.GHALEHBANDIetal[17]performedthesinglepassECAPdeformationof7075aluminiumalloyatroomtemperatureaftersolidsolutiontreatment,whereitwasfoundthatthefracturetoughnessofthematerialwassignificantlyimprovedafterECAPdeformationwithageingtreatment.
WhenperformingECAP,thedeformationenvironmenttemperaturehasagreatinfluenceonthemechanicalpropertiesofthealloy[18-21].The7075aluminiumalloyexhibitsexcellentstrengthandstiffnessproperties,butpoorductility,makingitdifficulttoperformmulti-passECAPatroomtemperature,whichiswhyithasreceivedlessresearchattention.
Inthisstudy,7075aluminiumalloysweresubjectedtomultiplepassECAPdeformationatroomtemperaturetoinvestigatetheeffectsoftheprocessonthemicrostructuretransformation,enhancementofthepropertiesandtheprecipitationbehaviouroftheprecipitationphaseoftheoriginalmaterial.
2Experimentalmethods
Commercial7075aluminiumalloywasusedasthematerialofstudy,thecompositionofwhichisshowninTable1.Thisalloywascutintoblocksamplesof30mm×18mm×170mmsizeandsubjectedtoa30minsolidsolutionwatercoolingtreatmentat477℃.Thesurfacefinishofthetreatedsampleswasachievedusingaverticalmillingmachine.
Table1Chemicalcompositionof7075aluminumalloy(wt%)
SiFeCuMnMgCrZnTiAl
0.080.271.510.062.500.205.520.03Bal.
下载:导出CSV
PriortoECAPdeformation,homemadelubricatingfluid(graphitepowderandoilmixture)wasevenlyappliedtothesamplesandtheextrusionrod.TheprocessparametersforECAPwereasfollows:adieangleofΦ=135°,anouterangleψ=20°,theextrusionspeedwas2.5mm/s,andtheextrusionmethodwasrouteC(thesamplewasrotated180°inthedieforthenextdeformationaftereachprocess),asshowninFigure1.Themicrostructureofthe7075aluminiumalloybeforeandafterdeformationwasstudiedbyelectronbackscatterdiffraction(EBSD,NORDLYSNANO)andhighresolutiontransmissionelectronmicroscope(HRTEM,FEITalosF200X)toobservethegrainsize,grainboundarycharacteristics,structuralevolutionandprecipitationphaseprecipitationbehaviourofthealloy.ThespecificsamplinglocationisthecentreoftheEDsurface.ThespecificpolishingparametersareshowninTable2.TheresultswereanalyzedusingChannel5softwareaftercompletingtheEBSDtesting.X-raydiffractometry(XRD,D8ADVANCEA25)wasusedtoexaminetheprecipitatedphasesbeforeandafterdeformation,andthephysicalphaseanalysiswasperformedusingtheJadesoftware.Stress-straintensileexperiments(INSTRON8801universaltestingmachine)wereconducted,andthefracturesinthematerialwereobservedbyscanningelectronmicroscopy(SEM).AHX-1000TMmicro-VickershardnesstesterwasusedtoexaminethehardnessoftheEDsurfacebeforeandafterdeformationandtoconstructacloudchart.ThehardnesscloudpointandtensilesamplesizeareshowninFigure2.
Figure1PrinciplediagramofECAP
下载:原图|高精图|低精图
Table2Parametersrequiredforelectrolyticpolishing
ProcessconditionParameter
Polishingsolution
10%perchloricacid
alcoholsolution
Polishingtemperature/℃-30
Polishingtime/min3
Polishingvoltage/V25
Polishingcurrent/A0.4-0.5
下载:导出CSV
Figure2(a)TherequiredmeasuringpointsfortheEDsurfacehardnesscloudchartand(b)thesizeofthetensilesample(Unit:mm)
下载:原图|高精图|低精图
3Resultsanddiscussion
Figure3showsthegrainorientationdiagrambeforeandafterfourpassesofECAPatroomtemperature,fromwhichitcanbeseenthatthegrainshapeandsizechangedsignificantlyafterdeformation.Theoriginalbasemetalwasatypicalrolledstripstructure(Figure3(a)),andthegraindistributionwascoarsestrip(withanaveragegrainsizeofaround26μm).AfterECAPsheardeformation,thestripgrainwasbrokenintoafineequiaxedstructurewithanaveragegrainsizeofaround4.5μmandthedistributionwasuniform(Figure3(b)).Figure4showsthegrainboundarydistributionbeforeandaftertheECAPandthedistributionfrequencyofthegrainboundarysize.AfterfourpassesofECAPdeformation,alargenumberofstress-induceddislocationsweregeneratedduetotheadjustmentofthelatticestructureduetostressconcentration,andalargenumberofsub-grainabsorptiondislocationsweregraduallytransformedfromalow-anglegrainboundary(LAGB)tohighanglegrainboundary(HAGB)[22].ByobservingthegrainmorphologybeforeandafterECAPinFigure3andsomeHAGBfragmentsinFigure4(b),itcanbeseenthatcontinuousdynamicrecrystallisation(CDRX)occurredinthematerialafterECAP.Therefore,theproportionofHAGBincreasedsignificantly,from8.1%fortheoriginalbasemetalto41.8%.AfterECAPdeformation,bimodaldistributionwasobservedatgrainboundaries,andthepeakwasattheLAGB(15°)andHAGB(50°-62°).Accordingtoanumberofstudies,bimodaldistributioncontributestothemicrostructureofthematerialexhibitinghighstrengthandhightoughness[23].
Figure3GrainorientationbeforeandafterECAP:(a)Originalbasemetal;(b)AfterECAPdeformation
下载:原图|高精图|低精图
Figure4GrainboundarydistributionbeforeandafterECAPdeformation:(a)Grainboundaryoftheoriginalbasemetal;(b)GrainboundarydiagramafterECAP;(c)Grainmisorientationdistributionoftheoriginalbasemetal;(d)GrainmisorientationdistributionafterECAPdeformation
下载:原图|高精图|低精图
Figure5showsthedistributionoftherecrystallisationbeforeandafterECAPdeformationbasedonEBSD,fromwhichthedegreeofcompletionofrecrystallisationbeforeandafterECAPdeformationcanbeobtained,whereblueindicatestherecrystallisationarea,yellowisthesub-grainlineareaandredisthedeformationarea.Thepercentageoftherecrystallisationareaincreasedsignificantlyafterfour-passesofECAPdeformation,whichindicatesthattherecrystallisationeffectisverysignificant.UndertheeffectofthepuresheardeformationofECAP,alargenumberofdislocationsaccumulatedinthedeformedgrainstoformdislocationcellsandgraduallytransformedintosub-structuraltissues.
Figure5RecrystallizationdistributionbeforeandafterECAPdeformation:(a)Originalbasemetal;(b)AfterfourpassesofECAP;(c)Recrystallizationfractionplotoftheoriginalbasemetal;(d)RecrystallizationfractionplotafterfourpassesofECAP
下载:原图|高精图|低精图
Figure6showsthelocalorientationdifference(KAM)andtherelativeprobabilitycurveofthealloybeforeandafterECAPdeformation,inwhichahighKAMvaluerepresentshighdislocationdensityintheregion(accordingtotheanalysisoftheEBSDdata,thedislocationdensityindicatedbytheKAMplotismainlygeometricallynecessarydislocations).ByobservingthedatashowninFigure6,itcanbeconcludedthattheKAMvaluesarereducedafterECAPdeformationcomparedtotheoriginalmaterial,whichhasthehighestpercentageat0.6and0.5afterECAPdeformation.ThisismainlyduetotheoccurrenceofCDRXinthematerial,whichmakesthedeformedgrainsgraduallyabsorbdislocationsandtransformintorecrystallisdgrains,aphenomenonthatisconsistentwiththeabovedescription.
Figure6LocalorientationdifferencedistributionbeforeandafterECAPdeformation:(a)Originalbasemetal;(b)AfterfourpassesofECAP;(c)Relativeprobabilitycurveoftheaverageorientationdifferences
下载:原图|高精图|低精图
Figure7showsthepolardiagramanalysisbeforeandafterECAPdeformation,fromwhichitcanbeseenthatthepreferredorientationchangedafterfour-passesofECAPdeformation.Figure7(a)showsthattheoriginalmaterialexhibitsatypicalrolledtexture(β-fibretexture),andafterECAPdeformation,thestrongestpointisobservedforthe{111}crystalplaneandderivesmorestrongpoints,mainlyfeaturingaC-typesheartexture,whichisduetotheidealpuresheardeformationofECAP,thec-axisistiltedintheEDandNDdirections,andthetextureorientationistilted45°alongthedeformationsystem.ThedecreaseinpolardensitycomparedtotheparentmaterialafterfourpassesofECAPdeformationmaybeexplainedbythefactthatthefactorsthatchangethecrystaldegreephaseduringtheECAPdeformationprocessmainlyincludedislocationaccretionandtwinning,andthedislocationcellcausedbydislocationaccretionhasrelativelyrandomphasestatistics[24].
Figure7PolediagramanalysisbeforeandafterECAPdeformation:(a)Originalmaterial;(b)AfterECAPdeformation
下载:原图|高精图|低精图
Figure8showstheXRDpatternanalysisoftheoriginalbasematerialandthealloyaftertheECAPdeformation.Itcanbeseenthattheprecipitatedphasesinprecipitationspeciesarebasicallythesamebeforeandafterdeformation,mainlyfeaturingamixtureofηphase(MgZn2),Sphase(Al2CuMg)andGPregion(Al2Cu).AfterECAPdeformation,theAl2Cuphasepeakcanbeobservedata2θangleof41.49°,andthecontentoftheMgZn2andAl2CuMgphasesdecreaseat2θanglesof44.87°and65.20°,whichmaybeduetothecoarseningofsomeinsolubleprecipitationphasesafterthesolidsolutionandnaturalageingoftheoriginalbasematerial,andthefragmentationandrefinementofprecipitatingandco-griddingwiththematrixduetoECAPdeformation[25].ThemainpeaksoftheprecipitatedphaseswereshiftedindifferentdirectionsafterECAPdeformation,indicatingthatbothprecipitationphasegenerationanddissolutionoccurred.
Figure8XRDanalysisbeforeandafterECAPdeformation
下载:原图|高精图|低精图
The7075aluminumalloyisaprecipitation-reinforcedaluminumalloy,thetypeandformationofthesecondphaseofwhichhaveagreatinfluenceonitsmaterialsmatrix[26-29].Figure9showstheTEManalysisoftheoriginalbasematerialandthesecondphaseafterECAPdeformation.InFigure9(a),itcanbeseenthatthecoarsesecondphases(indicatedbythewhitearrowsinthefigure),whicharemainlyFe-containingprecipitatedphases,appearintheoriginalbasematerial,andthesesecondphaseseasilygeneratelargestraingradientsaroundthemduetotheirlargesize,thusundergoingparticlestimulatednucleation(PSN).PSNnucleationcanproducerotationalcubictextureandPtexturearoundit,whichisoneofthereasonsforthelowstrengthofthetextureduetothefragmentationofthecoarsesecondphaseaftertheECAPdeformation.Thediffuselydistributedsecondphaseplaysakeyroleintherecoveryandrecrystallisationofthe7075aluminumalloy.FromFigure9(a),itcanalsobeobservedthatadiffusephasebandappearsatthegrainboundary(shownbytheyellowarrowinthefigure),andthefinesecondphaseinthedispersionphasebandcanproducepinningeffectongrainboundarymigration,sothemigrationofthegrainboundaryalongthewidthofthediffusephasebandexertsalargepinningforce,whichinhibitstheoccurrenceofreversionandrecrystallisationandthereforethedislocationdensityishigh[30].Figure9(b)showsthediffractioncalibrationoftheprecipitatedphasetypesinthepristinebasematerial,whichmainlyincludelongrod-likeMgZn2andfinesphericalAl2CuMg.InFigure9(c),itcanbeseenthattherolledpristinebasematerialcontainsalargenumberofdislocationsaccumulatedasdislocationwalls(shownbyblackarrowsinthefigure),andtheinteractionbetweenthesecondphaseanddislocationscanbeobservedinthebasematerial,whichshowsthatthemainstrengtheningmodesofthebasematerialaresecondphaseanddislocationreinforcements.AsshowninFigure9(d),comparedwiththebasematerial,thegrainsareelongatedinthe45°directionafterfourpassesofECAPdeformation.Moreover,thedislocationdensitydecreasesandthedislocationmorphologyisgreatlychanged.ThisisbecauseafterECAPdeformation,thedislocationsaregraduallytransformedintodislocationcellsundertheeffectofshearanddynamicrecovery,andfurtherevolveintosub-grainsuptotheHAGB.ItcanbeseenfromFigure9(d)thatthesecondphaseparticlesaremoreuniformlydistributedandfinerinsize,whichaccordingtotheOrowandispersionstrengtheningtheorycancontributetothemechanicalpropertiesofthematrix.
Figure9TEManalysisofbasemetalandalloysafterECAP:(a)Distributionofinsolublephaseintheoriginalbasemetal;(b)Typeoftheprecipitatedphaseofthe7075aluminiumalloy;(c)Dislocationdistributionoftheoriginalbasemetal;(d)DislocationdistributionafterECAPdeformation
下载:原图|高精图|低精图
Figure10showstheanalysisofdifferentprecipitationphasesin7075aluminiumalloyafterECAPdeformationusingHRTEMtodeterminethevariousprecipitationphasetypes.Thepositionselectedinthegreenboxinthefigureisthecircularprecipitationphase,andthelatticeconstantd=0.214nmcanbeknownbyinverseFFTtransformation,andtheprecipitationphasecanbeknownasAl2Cuphasebycomparingitslatticeconstantandmorphology.ThepositionselectedinthewhiteboxinthefigureistheAlmatrix,andbymeasuringthelatticeconstant,itisknownthatitslatticeconstantd=0.247nm,whichishigherthantheoriginallatticeconstantd=0.234nm,soitispresumedthattheAlmatrixlatticeconstantisdistortedinthevicinityoftheAl2Cuphase.Noticethattheyellowboxcheckedpositionisthebarprecipitationphase,andthelatticeconstantisknownbymeasurement.Thelatticeconstantd=0.845nm,andcombinedwiththephasemorphologycanbeknownastheMgZn2phase.Theareaselectedbytheblueboxisanellipsoidalprecipitationphase,andthelatticeconstantismeasuredtobed=0.247nm,andthephasecanbeidentifiedasAl2CuMgphaseincombinationwiththemorphology.
Figure10HRTEManalysisofdifferentprecipitationphases:(a)Almatrixlatticestripes;(b)Disc-shapedprecipitatedphase;(c)Disc-shapedprecipitatedphaselatticestripes;(d)Rod-likeprecipitatedphase;(e)Rod-likeprecipitatedphaselatticestripes;(f)Ellipticalprecipitatedphase;(g)Ellipticalprecipitatedphaselatticestripes
下载:原图|高精图|低精图
Figure11showsthehardnesscloudchartbeforeandafterECAPdeformation.ItcanbeseenfromthediagramthatthehardnessissignificantlyimprovedafterfourpassesofECAPdeformation,fromtheoriginalaverageofHV115toHV145,anincreaseof26.1%.ItcanthusbeseenthattheECAPdeformationprocesshasanobviouseffectontheimprovementinhardness.AfterfourpassesofECAPdeformation,themicrohardnessdistributionisrelativelyuniform,buttheaveragehardnessoftheuppersurfaceisslightlyhigherthanthatofthelowersurface.ThisisduetothelargesheareffectontheuppersurfaceduringECAPdeformation,andthelowersurfaceisnotuniformbecausethereisadeadzoneatthecornerofthedie.Accordingtopreviousresearch,theformationoftheGPzoneincreasessignificantlyafterECAPdeformation,whichisbeneficialtoimprovingthehardnessofthealloy.AfterECAPdeformation,thegrainsareeffectivelyrefined.TherelationshipbetweengrainsizeandhardnesscanbedescribedaccordingtotheequationbyCABIBBOetal[31]:
Figure11AnalysisofhardnesscloudchartbeforeandafterECAPdeformation:(a)Basemetal;(b)AfterECAPdeformation
下载:原图|高精图|低精图
H=H0+kd−1/2
(2)
whereHisthecurrenthardnessofthematerial;H0andkareconstants;anddisthegraindiameter.Thisequationshowsthatthesmallerthegrainsize,thegreaterthehardness.
Figure12showstheroomtemperaturetensilecurvesbeforeandafterECAPdeformation,withthemechanicalpropertiesshowninTable3.Theyieldstrength(YS),tensilestrength(UTS)andelongation(EL)ofthebasematerialare118MPa,153MPaand16.2%,respectively,whileafterECAPdeformation,theYS,UTSandELare314MPa,346MPaand6.5%,respectively.Comparedtothebasematerial,theYSandUTSwereenhancedby166.1%and126.1%,respectively,afterfour-passofECAPdeformation,buttheplasticitydecreasedsignificantly,from16.2%to6.5%,whichshowsthattheECAPdeformationprocessisaneffectivemeanstoimprovethestrengthofthemetal.TheeffectiveimprovementinYSandUTSafterECAPdeformationmaybetheresultofthecouplingeffectoffinegrainstrengtheningandworkhardening.TheplasticityofECAPisreducedduetotheincreaseingrainboundarydistortionanddefectsafterintenseplasticdeformation,whichreadilyleadstodislocationpluggingandisnotconducivetodislocationopening.Accordingtothetheoryoffinegrainstrengthening,afterECAPdeformation,thegrainsizedecreasesandtheproportionofrelativegrainboundariesincreases,andthustheresistancetodislocationmovementincreases.Itisdifficulttocrossthegrainboundaries;therefore,thestrengthiseffectivelyimproved.
Figure12Stress-straincurvesbeforeandafterECAPdeformation
下载:原图|高精图|低精图
Table3MechanicalpropertiesbeforeandafterECAPdeformation
MaterialYS/MPaUTS/MPaEL/%
BM11815316.2
ECAP3143466.5
下载:导出CSV
DuringtheECAPdeformationprocess,the7075aluminiumalloymatrixproducesnumerousstrengtheningmechanisms,suchassecond-phasestrengthening,finegrainstrengtheninganddislocationstrengthening.7075aluminiumalloyhasalargenumberofprecipitatedphases,whichhavebeendeterminedasMgZn2phase,Al2CuMgphaseandAl2CuphasebyXRDandHRTEMabove,so,thesecond-phasestrengtheningmodelrelatedtothevolumefractionisusedtocalculateitscontributiontotheyieldstrengthof7075aluminumalloy.ThemeasuredprecipitationphasevolumefractionpictureisshowninFigure9(b).ThemeasurementsoftwareisImage-Proplus,andtheequationfollowedis[32]:
σs=σm[Vp(S+2)2+Vm]
(3)
whereσmisthematrixyieldstrength;Vpisthevolumefractionoftheprecipitatedphase;Vmisthematrixvolumefraction;Sistheaspectratiooftheprecipitatedphase.Theincrementaleffectofprecipitationphasestrengtheningontheyieldstrengthofthematerialis[32]:
Δσs=σs−σi
(4)
ThevolumefractionVpoftheprecipitatedphasewas0.155measuredbyImage-Proplussoftware;matrixvolumefractionVmis0.845;theaspectratioSoftheprecipitatedphaseis1.35.Therefore,itcanbecalculatedthattheprecipitationphasereinforcementcontributes32.85MPatotheyieldstrengthduringECAP.Finegrainstrengtheninghasasignificanteffectontheyieldstrengthimprovementofthematerial.Toinvestigatethespecificvalueofitscontributiontotheyieldstrengthofthematerial,theeffectofgrainsizeontheyieldstrengthofECAPafterdeformationwasthereforeinvestigatedaccordingtotheHall-Petchrelationship(Eq.(1)).AndthestrengtheningeffectoffinegrainsontheyieldstrengthincrementofthematerialduringECAPdeformationis[33]:
Δσs=σ1−σ0
(5)
Δσs=K0(d−1/21−d−1/20)
(6)
Inthealuminiumalloy,K0is0.06-0.28MPa/m1/2.Therefore,itcanbeconcludedthatthemaximumcontributiontothematerialyieldstrengthbyfinegrainstrengtheningis76.7MPa.AccordingtotheaboveKAMdiagramanalysis,itcanbeseenthatthedislocationdistributioninsidethematerialmatrixisrelativelyuniformafterECAPdeformation,sothecontributionofdislocationstrength(Δσd)anddislocationdensity(ρ)totheyieldstrengthhasbeenstudiedwithTaylorformula[34]:
Δσd=Mα1Gbρ−−√
(7)
whereM=3.06istheTaylorfactor;α1=0.3isaconstant;G=27GPaistheshearmodulusofAl;b=0.286nmistheBurgersvectorofdislocationsintheAlalloy,andtheinternaldislocationdensityafterECAPdeformationcanbecalculatedas6.2×1013m-2bytheKAMplot.Thecalculatedcontributiontotheyieldstrengthofthematerialmatrixbydislocationstrengtheningis54.7MPa.Therefore,itcanbededucedthatduringECAPdeformation,finegrainstrengtheningcontributesmosttotheyieldstrength,followedbydislocationstrengthening,andprecipitationphasestrengtheningthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论