计量经济学上机实验报告2_第1页
计量经济学上机实验报告2_第2页
计量经济学上机实验报告2_第3页
计量经济学上机实验报告2_第4页
计量经济学上机实验报告2_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《计量经济学》上机实验报告三题目:5.3实验日期和时间:2013年11月27日星期三班级:11国贸一班学号:20111291姓名:何鹏飞实验室:103实验环境:WindowsXP;EViews3.1实验目的:掌握异方差性的检验及处理方法实验内容:建立并检验我国制造业利润函数模型实验步骤:建立模型dataxylsycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:15:12Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C179.1916221.57750.8087090.4253X0.7195000.04570015.744110.0000R-squared0.895260Meandependentvar3376.309AdjustedR-squared0.891649S.D.dependentvar1499.612S.E.ofregression493.6240Akaikeinfocriterion15.30377Sumsquaredresid7066274.Schwarzcriterion15.39628Loglikelihood-235.2084F-statistic247.8769Durbin-Watsonstat1.461684Prob(F-statistic)0.000000由此得回归方程y=179.1916+0.719500xt=(0.808709)(15.74411)R^2=0.895260F=247.8769异方差检验图形法相关图scatxy从图中可以看出,随着家庭人均纯收入的增加,家庭生活的消费支出不断提高,但离散程度也逐步扩大。这说明变量之间可能存在递增的异方差性。残差分析SortxLsycx在方程窗口中点击Resids按钮就可以得到模型的残差分布图图显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。Goldfeld-Quant检验sortxsmpl112lsycx其残差平方和为413440.3,如下图所示:DependentVariable:YMethod:LeastSquaresDate:11/27/13Time:15:48Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.C1111.223409.57502.7131120.0218X0.4519000.1364283.3123780.0078R-squared0.523170Meandependentvar2453.886AdjustedR-squared0.475487S.D.dependentvar280.7556S.E.ofregression203.3323Akaikeinfocriterion13.61857Sumsquaredresid413440.3Schwarzcriterion13.69939Loglikelihood-79.71143F-statistic10.97185Durbin-Watsonstat2.030396Prob(F-statistic)0.007848smpl2031lsycx其残差平方和为5043053.如下图所示:DependentVariable:YMethod:LeastSquaresDate:11/27/13Time:15:57Sample:2031Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.C-654.7683675.4844-0.9693320.3552X0.8338200.1031358.0847490.0000R-squared0.867309Meandependentvar4548.782AdjustedR-squared0.854040S.D.dependentvar1858.788S.E.ofregression710.1446Akaikeinfocriterion16.11983Sumsquaredresid5043053.Schwarzcriterion16.20064Loglikelihood-94.71896F-statistic65.36316Durbin-Watsonstat2.603102Prob(F-statistic)0.000011=5043053/413440.3=12.197778>所以原方程确实存在异方差White检验Smpl131LsycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:16:12Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C179.1916221.57750.8087090.4253X0.7195000.04570015.744110.0000R-squared0.895260Meandependentvar3376.309AdjustedR-squared0.891649S.D.dependentvar1499.612S.E.ofregression493.6240Akaikeinfocriterion15.30377Sumsquaredresid7066274.Schwarzcriterion15.39628Loglikelihood-235.2084F-statistic247.8769Durbin-Watsonstat2.119816Prob(F-statistic)0.000000WhiteHeteroskedasticityTest:F-statistic7.194463Probability0.003011Obs*R-squared10.52295Probability0.005188TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:11/27/13Time:16:14Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C69872.27641389.00.1089390.9140X-72.02221248.7240-0.2895670.7743X^20.0203370.0206270.9859720.3326R-squared0.339450Meandependentvar227944.3AdjustedR-squared0.292268S.D.dependentvar592250.3S.E.ofregression498241.3Akaikeinfocriterion29.16732Sumsquaredresid6.95E+12Schwarzcriterion29.30610Loglikelihood-449.0935F-statistic7.194463Durbin-Watsonstat2.430258Prob(F-statistic)0.003011,表明模型存在异方差性。park检验Genrlne2=log(resid^2)Genrlnx=log(x)Lslne2clnxDependentVariable:LNE2Method:LeastSquaresDate:11/27/13Time:21:45Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C-10.186029.493410-1.0729570.2921LNX2.4313241.1395802.1335260.0415R-squared0.135668Meandependentvar10.04780AdjustedR-squared0.105864S.D.dependentvar2.521154S.E.ofregression2.383972Akaikeinfocriterion4.637754Sumsquaredresid164.8164Schwarzcriterion4.730269Loglikelihood-69.88519F-statistic4.551932Durbin-Watsonstat2.319820Prob(F-statistic)0.041468从图所示的回归结果中可以看出,lnx的系数估计值不为0且能通过显著性检验,即随即误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。Gleiser检验Genre=abs(resid)LsecxDependentVariable:EMethod:LeastSquaresDate:11/27/13Time:22:38Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C-211.4247138.2104-1.5297310.1369X0.1149250.0285054.0316810.0004R-squared0.359179Meandependentvar299.2470AdjustedR-squared0.337082S.D.dependentvar378.1650S.E.ofregression307.9011Akaikeinfocriterion14.35978Sumsquaredresid2749290.Schwarzcriterion14.45229Loglikelihood-220.5765F-statistic16.25445Durbin-Watsonstat2.201513Prob(F-statistic)0.000367回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。所以认为存在异方差性。三、异方差性的修正(一)genrw1=1/xls(w=w1)ycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:19:14Sample:131Includedobservations:31Weightingseries:W1VariableCoefficientStd.Errort-StatisticProb.C578.2963174.57163.3126600.0025X0.6233050.04768213.072260.0000WeightedStatisticsR-squared0.274523Meandependentvar2983.378AdjustedR-squared0.249507S.D.dependentvar373.3588S.E.ofregression323.4445Akaikeinfocriterion14.45827Sumsquaredresid3033875.Schwarzcriterion14.55079Loglikelihood-222.1032F-statistic10.97372Durbin-Watsonstat1.809428Prob(F-statistic)0.002484UnweightedStatisticsR-squared0.878889Meandependentvar3376.309AdjustedR-squared0.874712S.D.dependentvar1499.612S.E.ofregression530.8026Sumsquaredresid8170791.Durbin-Watsonstat1.891210对此修正进行white检验得WhiteHeteroskedasticityTest:F-statistic4.572942Probability0.019119Obs*R-squared7.632673Probability0.022008TestEquation:DependentVariable:STD_RESID^2Method:LeastSquaresDate:11/27/13Time:19:16Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C244340.0179933.91.3579440.1853X-85.5377669.77649-1.2258820.2305X^20.0099380.0057871.7173280.0970R-squared0.246215Meandependentvar97866.92AdjustedR-squared0.192373S.D.dependentvar155534.2S.E.ofregression139775.5Akaikeinfocriterion26.62523Sumsquaredresid5.47E+11Schwarzcriterion26.76400Loglikelihood-409.6910F-statistic4.572942Durbin-Watsonstat2.041194Prob(F-statistic)0.019119,修正失败,仍然存在异方差性。(二)genrw1=1/x^2ls(w=w1)ycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:19:21Sample:131Includedobservations:31Weightingseries:W2VariableCoefficientStd.Errort-StatisticProb.C787.2847173.69644.5325340.0001X0.5614720.05573110.074680.0000WeightedStatisticsR-squared0.946060Meandependentvar2743.600AdjustedR-squared0.944200S.D.dependentvar1165.059S.E.ofregression275.2095Akaikeinfocriterion14.13528Sumsquaredresid2196468.Schwarzcriterion14.22780Loglikelihood-217.0969F-statistic508.6387Durbin-Watsonstat1.700243Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.848003Meandependentvar3376.309AdjustedR-squared0.842762S.D.dependentvar1499.612S.E.ofregression594.6448Sumsquaredresid10254472Durbin-Watsonstat1.541791对此模型进行white检验WhiteHeteroskedasticityTest:F-statistic4.502171Probability0.020169Obs*R-squared7.543293Probability0.023014TestEquation:DependentVariable:STD_RESID^2Method:LeastSquaresDate:11/27/13Time:19:22Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C435027.3125153.53.4759500.0017X-137.005048.53323-2.8229120.0087X^20.0104050.0040252.5852230.0152R-squared0.243332Meandependentvar70853.80AdjustedR-squared0.189284S.D.dependentvar107975.9S.E.ofregression97221.25Akaikeinfocriterion25.89913Sumsquaredresid2.65E+11Schwarzcriterion26.03790Loglikelihood-398.4365F-statistic4.502171Durbin-Watsonstat1.150638Prob(F-statistic)0.020169,仍存在异方差性,修正失败。(三)genrw3=1/sqr(x)ls(w3)ycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:19:27Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C179.1916221.57750.8087090.4253X0.7195000.04570015.744110.0000R-squared0.895260Meandependentvar3376.309AdjustedR-squared0.891649S.D.dependentvar1499.612S.E.ofregression493.6240Akaikeinfocriterion15.30377Sumsquaredresid7066274.Schwarzcriterion15.39628Loglikelihood-235.2084F-statistic247.8769Durbin-Watsonstat2.119816Prob(F-statistic)0.000000对此模型进行white检验WhiteHeteroskedasticityTest:F-statistic7.194463Probability0.003011Obs*R-squared10.52295Probability0.005188TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:11/27/13Time:19:30Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C69872.27641389.00.1089390.9140X-72.02221248.7240-0.2895670.7743X^20.0203370.0206270.9859720.3326R-squared0.339450Meandependentvar227944.3AdjustedR-squared0.292268S.D.dependentvar592250.3S.E.ofregression498241.3Akaikeinfocriterion29.16732Sumsquaredresid6.95E+12Schwarzcriterion29.30610Loglikelihood-449.0935F-statistic7.194463Durbin-Watsonstat2.430258Prob(F-statistic)0.003011,仍然存在异方差性。(四)根据park检验结果Genrw4=1/x^2.431324Ls(w4)ycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:22:01Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C179.1916221.57750.8087090.4253X0.7195000.04570015.744110.0000R-squared0.895260Meandependentvar3376.309AdjustedR-squared0.891649S.D.dependentvar1499.612S.E.ofregression493.6240Akaikeinfocriterion15.30377Sumsquaredresid7066274.Schwarzcriterion15.39628Loglikelihood-235.2084F-statistic247.8769Durbin-Watsonstat1.461684Prob(F-statistic)0.000000WhiteHeteroskedasticityTest:F-statistic7.194463Probability0.003011Obs*R-squared10.52295Probability0.005188TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:11/27/13Time:22:01Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C69872.27641389.00.1089390.9140X-72.02221248.7240-0.2895670.7743X^20.0203370.0206270.9859720.3326R-squared0.339450Meandependentvar227944.3AdjustedR-squared0.292268S.D.dependentvar592250.3S.E.ofregression498241.3Akaikeinfocriterion29.16732Sumsquaredresid6.95E+12Schwarzcriterion29.30610Loglikelihood-449.0935F-statistic7.194463Durbin-Watsonstat2.390409Prob(F-statistic)0.003011,仍然存在异方差性。(五)genrw5=1/abs(resid)ls(w=w5)ycxDependentVariable:YMethod:LeastSquaresDate:11/27/13Time:22:44Sample:131Includedobservations:31Weightingseries:W5VariableCoefficientStd.Errort-StatisticProb.C272.773831.349028.7011900.0000X0.6965120.00809985.998460.0000WeightedStatisticsR-squared0.999696Meandependentvar2971.214AdjustedR-squared0.999685S.D.dependentvar3736.797S.E.ofregression66.27406Akaikeinfocriterion11.28781Sumsquaredresid127375.3S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论