蛋白质工程崛起_第1页
蛋白质工程崛起_第2页
蛋白质工程崛起_第3页
蛋白质工程崛起_第4页
蛋白质工程崛起_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蛋白质工程崛起的缘由要想让一种生物的性状在另一种生物中表达,在种内可以用常规杂交育种的办法实现,但要使有生殖隔离的种间生物实现基因交流,就显得力不从心了。基因工程的诞生,为克服远缘杂交的障碍问题,带来了新的希望。于是取得了丰硕成果:大肠杆菌为人类生产出了胰岛素,牛的乳腺生物反应器为人类制造出了蛋白质类药物,烟草植物体内含有了某种药物蛋白……至此,人们也只是实现了世界上现有基因在转基因生物中的表达。但一个新问题出现了,生物产生的天然蛋白质是在长期进化过程中形成的,它的结构、性能不能完全满足人类生产和生活的需要。

一、蛋白质工程崛起的缘由基因工程只能生产自然界已存在的蛋白质。天然蛋白质的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。

例如,干扰素是动物体内的一种蛋白质,可以用于治疗病毒的感染和癌症,但在体外保存相当困难。如果将其分子上的一个半胱氨酸变成丝氨酸,则在-70℃可保存半年。玉米中赖氨酸含量比较低,原因是赖氨酸浓度达到一定时会抑制赖氨酸合成过程中的两个关键酶——天冬氨酸激酶和二氢吡啶二羧酸合成酶的活性,所以赖氨酸含量很难提高。如果将天冬氨酸激酶第352位的苏氨酸变成异亮氨酸,将二氢吡啶二羧酸合成酶中104位的天冬氨酰变成异亮氨酸,可使玉米叶片和种子中游离的赖氨酸含量分别提高5倍和2倍。改造干扰素(半胱氨酸)体外很难保存干扰素(丝氨酸)体外可以保存半年玉米中赖氨酸含量比较低天冬氨酸激酶(352位的苏氨酸)二氢吡啶二羧酸合成酶(104位的天冬酰胺)天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(异亮氨酸)玉米中赖氨酸含量可提高数倍改造改造

在已研究过的几千种酶中,只有极少数可以应用于工业生产,绝大多数酶都不能应用于工业生产,这些酶虽然在自然状态下有活性,但在工业生产中没有活性或活性很低。这是因为工业生产中每一步的反应体系中常常会有酸、碱或有机溶剂存在,反应温度较高,在这种条件下,大多数酶会很快变性失活。提高蛋白质的稳定性是工业生产中一个非常重要的课题。一般来说,提高蛋白质的稳定性包括:提高酶的热稳定性,延长药用蛋白的保存期,抵御由于重要氨基酸氧化引起的活性丧失等。

P26

你知道人类蛋白质组计划吗?它与蛋白质工程有什么关系?我国科学家承担了什么任务?

人类蛋白质组计划是继人类基因组计划之后,生命科学乃至自然科学领域中的一项重大的科学命题。2001年,国际人类蛋白质组组织宣告成立。之后,该组织正是提出启动两项重大国际合作行为:一项是有中国科学家牵头执行的“人类肝脏蛋白质组计划”;另一项是以美国科学家牵头执行的“人类血浆蛋白质组计划”。

“人类肝脏蛋白质组计划”是国际上第一个人类组织/器官的蛋白质组计划,由我国贺福初院士牵头,这是中国科学家第一次领衔的重大国际科研协作计划,总部设在北京,目前有16个国家和地区的80多个实验室报名参加。它的科学目标是揭示并确认肝脏的蛋白质,为重大肝病预防、诊断、治疗和新药研发的突破提供重要的科学基础。人类蛋白质组计划的深入研究将是对蛋白质工程的有力推动和理论支持。二、蛋白质工程的基本原理

P26对天然蛋白质进行改造,你认为应该直接对蛋白质分子进行操作,还是通过对基因的操作来实现?1、目标:根据人们对蛋白质功能的特定需求,对蛋白质的结构进行分子设计。答:毫无疑问应该从对基因的操作来实现对天然蛋白质改造,主要原因如下:(1)任何一种天然蛋白质都是由基因编码的,改造了基因即对蛋白质进行了改造,而且改造过的蛋白质可以遗传下去。如果对蛋白质直接改造,即使改造成功,被改造过的蛋白质分子还是无法遗传的。(2)对基因进行改造比对蛋白质直接改造要容易操作,难度要小得多。基因决定蛋白质逆转录转录DNARNA翻译肽链复制复制具有高级结构的蛋白质行使生物功能天然蛋白质的合成过程遵循中心法则,并需经过高级空间结构的转变蛋白质的一级结构

蛋白质的结构

蛋白质的结构

蛋白质的二级结构是指蛋白质分子中多肽链本身的折叠方式。阅读:次

录入:admin

【推荐

】【打印】上一篇:[多图]基因工程(geneengineering)

下一篇:蛋白质工程

溶菌酶分子的三级结构胰岛素的三级结构蛋白质的结构

血红蛋白质的四级结构

血红蛋白分子就是由二个由141个氨基酸残基组成的α亚基和二个由146个氨基酸残基组成的β亚基按特定的接触和排列组成的一个球状蛋白质分子,每个亚基中各有一个含亚铁离子的血红素辅基。蛋白质的结构

二、蛋白质工程的基本原理3.原理中心法则的逆推4.过程设计蛋白质结构预期蛋白质功能推测应有的氨基酸序列找到相应的脱氧核苷酸序列(基因)2.实质:

改造基因1.目标:根据人们对蛋白质功能的特定需求,对蛋白质的结构进行分子设计。基因决定蛋白质P27----某多肽的一段氨基酸序列是:...—丙氨酸-色氨酸-赖氨酸-甲硫氨酸-苯丙氨酸-...讨论:1、怎样得出决定这一段肽链的脱氧核苷酸序列?写出相应的碱基.丙氨酸:GCU、GCC、GCA、GCG色氨酸:UGG赖氨酸:AAA、AAG甲硫氨酸:AUG苯丙氨酸:UUU、UUC2、确定目的基因的碱基序列后,怎样才能合成或改造目的基因(DNA)?(1)mRNA序列为:GCU(或C或A或G)UGGAAA(或G)AUGUUU(或C)

脱氧核苷酸序列:CGA(或G或T或C)ACCTTT(或C)TACAAA(或G)(2)确定目的基因的碱基序列后,就可以根据人类的需要改造它,通过人工合成的方法或从基因库中获取。5、概念:

蛋白质工程是指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。

蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程。蛋白质工程的内容主要有两方面:①根据需要设计具有特定氨基酸序列和空间结构的蛋白质②而氨基酸排序由基因决定,所以还需要改造相应基因中脱氧核苷酸序列或人工合成所需要的自然界原本不存在的基因片段,用于蛋白质工程。

异想天开

能不能根据人类需要的蛋白质的结构,设计相应的基因,导入合适的细菌中,让细菌生产人类所需要的蛋白质食品呢?

理论上讲可以,但目前还没有真正成功的例子。一些报道利用细菌生产人类需要的蛋白质往往都是自然界已经存在的蛋白质,并非完全是人工设计出来而自然不存在的蛋白质。主要原因是蛋白质的高级结构非常复杂,人类对蛋白质的高级结构和在生物体内如何行使功能知之甚少,很难设计出一个崭新而又具有生命功能作用的蛋白质,而且一个崭新的蛋白质会带来什么危害也是人们所担心的。

三、蛋白质工程的进展和前景1、蛋白质工程的诞生是有其理论与技术条件的,它是随着分子生物学、晶体学以及计算机技术的发展而诞生的,与基因组学、蛋白质组学、生物信息学的发展等因素有关。

速效胰岛素天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。该速效胰岛素已通过临床实验。如今,生物和材料科学家正积极探索将蛋白质工程应用于微电子方面。用蛋白质工程方法制成的电子元件,具有体积小、耗电少和效率高的特点,因此有极为广阔的发展前景。

蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。

三、蛋白质工程的进展和前景1.进展胰岛素速效型药品

2.前景制作电子元件:体积小,耗电少,效率高3.现状成功的例子不多,蛋白质的功能主要依赖于其正确而又极其复杂的高级结构,目前科学家对大多数蛋白质的高级结构了解还不够,要设计出更加符合人类需求的蛋白质换需经过艰辛的探索。P29----2.蛋白质工程操作程序的基本思路与基因工程有什么不同?答:基因工程是遵循中心法则,从DNA→mRNA→蛋白质→折叠产生功能,基本上是生产出自然界已有的蛋白质。蛋白质工程是按照以下思路进行的:确定蛋白质的功能→蛋白质应有的高级结构→蛋白质应具备的折叠状态→应有的氨基酸序列→应有的碱基排列,可以创造自然界不存在的蛋白质。P28---3你知道酶工程吗?绝大多数酶都是蛋白质,酶工程与蛋白质工程有什么区别?

酶工程就是指将酶所具有的生物催化作用,借助工程学的手段,应用于生产、生活、医疗诊断和环境保护等方面的一门科学技术。概括地说,酶工程是由酶制剂的生产和应用两方面组成的。酶工程的应用主要集中于食品工业、轻工业以及医药工业中。通常所说的酶工程是用工程菌生产酶制剂,而没有经过由酶的功能来设计酶的分子结构,然后由酶的分子结构来确定相应基因的碱基序列等步骤。因此,酶工程的重点在于对已存酶的合理充分利用,而蛋白质工程的重点则在于对已存在的蛋白质分子的改造。当然,随着蛋白质工程的发展,其成果也会应用到酶工程中,使酶工程成为蛋白质工程的一部分。蛋白质工程与基因工程的比较项目蛋白质工程基因工程区别过程预期蛋白质功能→设计预期的蛋白质结构→推测应有的氨基酸序列→推测相对应的脱氧核苷酸序列→合成DNA→表达出蛋白质获取目的基因→构建基因表达载体→将目的基因导入受体细胞→目的基因的检测与鉴定实质定向改造或生产人类所需蛋白质定向改造生物的遗传特性,以获得人类所需的生物类型或生物产品结果生产自然界没有的蛋白质一般是生产自然界已有的蛋白质联系蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程。因为对现有蛋白质的改造或制造新的蛋白质,必须通过基因修饰或基因合成实现一、蛋白质工程崛起的理由基因工程只能生产自然界已存在的蛋白质。天然蛋白质的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。小结一、蛋白质工程崛起的缘由满足人类生产和生活的需要例如:改造干扰素(半胱氨酸)体外很难保存干扰素(丝氨酸)体外可以保存半年玉米中赖氨酸含量比较低天冬氨酸激酶(352位的苏氨酸)二氢吡啶二羧酸合成酶(104位的天冬酰胺)天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(异亮氨酸)玉米中赖氨酸含量可提高数倍改造改造小结二、蛋白质工程的基本原理原理中心法则的逆推过程设计蛋白质结构预期蛋白质功能推测应有的氨基酸序列找到相应的脱氧核苷酸序列(基因)实质:

改造基因目标:根据人们对蛋白质功能的特定需求,对蛋白质的结构进行分子设计。基因决定蛋白质概念:

、三蛋白质工程的进展和前景1.进展胰岛素速效型药品

2.前景制作电子元件:体积小,耗电少,效率高3.现状

例如,干扰素是动物体内的一种蛋白质,可以用于治疗病毒的感染和癌症,但在体外保存相当困难。如果将其分子上的一个半胱氨酸变成丝氨酸,则在-70℃可保存半年。玉米中赖氨酸含量比较低,原因是赖氨酸浓度达到一定时会抑制赖氨酸合成过程中的两个关键酶——天冬氨酸激酶和二氢吡啶二羧酸合成酶的活性,所以赖氨酸含量很难提高。如果将天冬氨酸激酶第352位的苏氨酸变成异亮氨酸,将二氢吡啶二羧酸合成酶中104位的天冬氨酰变成异亮氨酸,可使玉米叶片和种子中游离的赖氨酸含量分别提高5倍和2倍。改造干扰素(半胱氨酸)体外很难保存干扰素(丝氨酸)体外可以保存半年玉米中赖氨酸含量比较低天冬氨酸激酶(352位的苏氨酸)二氢吡啶二羧酸合成酶(104位的天冬酰胺)天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(异亮氨酸)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论