




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波鄞州区五校联考2024届八年级数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1 B.2 C.3 D.42.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4) B.(a+2)(a﹣2) C.(a﹣2)2 D.a(a+2(a﹣2)3.已知实数a满足,那么的值是()A.2005 B.2006 C.2007 D.20084.如图所示,将△ABC沿着DE折叠,使点A与点N重合,若∠A=65°,则∠1+∠2=()A.25° B.130°C.115° D.65°5.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.6.化简的结果是()A. B. C. D.7.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. B.C. D.8.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)9.端午节期间,某地举行龙舟比赛甲、乙两支龙舟在比赛时路程米与时间分钟之间的函数图象如图所示根据图象,下列说法正确的是A.1分钟时,乙龙舟队处于领先B.在这次龙舟赛中,甲支龙舟队比乙支龙舟队早分钟到达终点C.乙龙舟队全程的平均速度是225米分钟D.经过分钟,乙龙舟队追上了甲龙舟队10.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.1511.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>012.下列图象不能反映y是x的函数的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,中,与的平分线相交于点,经过点,分别交,于点,,.点到的距离为,则的面积为__________.14.中,,,点为延长线上一点,与的平分线相交于点,则的度数为__________.15.方程的解是________.16.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.17.已知:在中,,垂足为点,若,,则______.18.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.三、解答题(共78分)19.(8分)如图,已知AB⊥BC,EC⊥BC,ED⊥AC且交AC于F,BC=CE,则AC与ED相等吗?说明你的理由.20.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(8分)今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?22.(10分)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(2)判断△ACE的形状,并证明.23.(10分)进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?24.(10分)去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用小时,试求一台清雪机每小时清雪多少立方米.25.(12分)已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EF∥BC,分别交AC、CF于点H、F求证:EH=HF26.如图,已知长方形纸片ABCD中,AB=10,AD=8,点E在AD边上,将△ABE沿BE折叠后,点A正好落在CD边上的点F处.(1)求DF的长;(2)求△BEF的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【题目详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选C.【题目点拨】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.2、A【分析】原式利用提取公因式法分解因式即可.【题目详解】解:原式=a(a﹣4),故选:A.【题目点拨】本题考查因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.3、C【分析】先根据二次根式有意义的条件求出a的取值范围,然后去绝对值符号化简,再两边平方求出的值.【题目详解】∵a-1≥0,∴a≥1,∴可化为,∴,∴a-1=20062,∴=1.故选C.【题目点拨】本题考查了绝对值的意义、二次根式有意义的条件,求出a的取值范围是解答本题的关键.4、B【分析】先根据图形翻转变化的性质得出∠AED=∠NED,∠ADE=∠NDE,再根据三角形内角和定理即可求出∠AED+∠ADE及∠NED+∠NDE的度数,再根据平角的性质即可求出答案.【题目详解】解:∵△NDE是△ADE翻转变换而成的,∴∠AED=∠NED,∠ADE=∠NDE,∠A=∠N=65°∴∠AED+∠ADE=∠NED+∠NDE=180°-65°=115°∴∠1+∠2=360°-2×(∠NED+∠NDE)=360°-2×115°=130°故选:B【题目点拨】本题主要考查简单图形折叠问题,图形的翻折部分在折叠前后的形状、大小不变,是全等的,解题时充分挖掘图形的几何性质,掌握其中的基本关系是解题的关键.5、B【解题分析】试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.6、A【分析】先通分,然后根据分式的加法法则计算即可.【题目详解】解:===故选A.【题目点拨】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.7、C【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【题目详解】解:由图可知:正方形面积=两个正方形面积+两个长方形的面积故选:C.【题目点拨】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.8、A【解题分析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.9、D【解题分析】A、B、C根据图象解答即可;D先求乙队加速后,路程米与时间分钟之间的函数关系式,然后求出两条线段的交点坐标即可.【题目详解】A、在前2分钟时甲的图象一直在乙的图象上方,所以1分钟时,甲龙舟队处于领先位置,故选项A错误;
B、在这次龙舟赛中,乙支龙舟队比甲支龙舟队早分钟到达终点,故选项B错误;
C、乙龙舟队全程的平均速度是,故选项C错误;
D、设乙队加速后,路程米与时间分钟之间的函数关系式为,
根据题意得,解得,
故,;
设甲队路程米与时间分钟之间的函数关系式为,根据题意得,解得,故,
解方程组得,
所以经过分钟,乙龙舟队追上了甲龙舟队,故选项D正确.
故选:D.
【题目点拨】考查函数图象问题,解决图象问题时首先要判断准横轴和纵轴表示的意义,然后要读明白图象所表示的实际意义.10、D【题目详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【题目点拨】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.11、B【题目详解】解:A.对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故错误;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故正确;C.若a=b,则的逆命题为若,则a=b,此逆命题为假命题,故错误;D.若a>0,b>0,则的逆命题为若,则a>0,b>0,此逆命题为假命题,故错误.故选B.12、C【题目详解】解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.二、填空题(每题4分,共24分)13、1【分析】依据条件可得∠EOB=∠CBO,进而可得出EF∥BC,进而得到△COF中OF边上的高为4cm,再根据三角形面积计算公式,即可得到△OFC的面积.【题目详解】解:∵BE=OE,∴∠EBO=∠EOB,∵BO平分∠ABC,∴∠EBO=∠CBO,∴∠EOB=∠CBO,∴EF∥BC,∵点O到BC的距离为4cm,∴△COF中OF边上的高为4cm,又∵OF=3cm,∴△OFC的面积为cm2故答案为:1.【题目点拨】本题主要考查了角平分线的定义以及三角形的面积,判定EF∥BC是解决问题的关键.14、15°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【题目详解】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故答案为:15°.【题目点拨】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.15、.【分析】方程两边同乘以(x-3)变为整式方程,解答整式方程,最后进行检验即可.【题目详解】,方程两边同乘以(x-3),得,x-2=4(x-3)解得,.检验:当时,x-3≠1.故原分式方程的解为:.【题目点拨】本题主要考查了解分式方程,解题的关键是将分式方程转化为整式方程再求解,注意最后要检验.16、0.1.【解题分析】直接利用频数÷总数=频率,进而得出答案.【题目详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【题目点拨】本题考查频数与频率,正确掌握频率求法是解题关键.17、75°或35°【分析】分两种情况:当为锐角时,过点A作AD=AB,交BC于点D,通过等量代换得出,从而利用三角形外角的性质求出,最后利用三角形内角和即可求解;当为钝角时,直接利用等腰三角形的性质和外角的性质即可求解.【题目详解】当为锐角时,过点A作AD=AB,交BC于点D,如图1当为钝角时,如图2故答案为:75°或35°.【题目点拨】本题主要考查等腰三角形的性质和三角形外角的性质,分情况讨论是解题的关键.18、【分析】设AO=x,则BO=DO=6﹣x,在直角△ABO中利用勾股定理即可列方程求得x的值,则可求出OD的长.【题目详解】解:∵△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,∴∠C'BD=∠CBD,∵长方形ABCD中,AD∥BC,∴∠ODB=∠CBD,∴∠ODB=∠C'BD,∴BO=DO,设AO=x,则BO=DO=6﹣x,在直角△ABO中,AB2+AO2=BO2,即42+x2=(6﹣x)2,解得:x=,则AO=,∴OD=6﹣=,故答案为:.【题目点拨】本题考查直角三角形轴对称变换及勾股定理和方程思想方法的综合应用,熟练掌握直角三角形轴对称变换的性质及方程思想方法的应用是解题关键.三、解答题(共78分)19、AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【题目详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【题目点拨】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.20、(1),直线的解析式为.(2)坐标为或.(3)存在,满足条件的点的坐标为或或.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解答;(2)分两种情况:①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,,求出点;②当时,如图,同法可得,再将解代入直线解析式求出n值即可解答;(3)利用三角形面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,再根据对称性可得即可解答.【题目详解】(1)直线与轴交于点,与轴交于点,,,,,,,,,设直线的解析式为,则有,,直线的解析式为.(2),,,,设,①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.是等腰直角三角形,易证,,,,点在直线,,,.②当时,如图,同法可得,点在直线上,,,.综上所述,满足条件的点坐标为或.(3)如图,设,,,,,,直线的解析式为,作交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,当点在第三象限,由BC=DE,根据对称性知,点D关于点A对称的点也符合条件,综上所述,满足条件的点的坐标为或或.【题目点拨】本题考查三角形的面积、待定系数法求直线解析式、全等三角形的判定与性质、平行四边形的判定与性质,是一次函数与几何图形的综合题,解答的关键是理解题意,认真分析,结合图形,寻找相关联的信息,利用待定系数法、数形结合等解题方法进行推理、计算.21、(1)购买一个型垃圾桶、型垃圾桶分别需要50元和80元;(2)此次最多可购买1个型垃圾桶.【分析】(1)设一个A型垃圾桶需x元,则一个B型垃圾桶需(x+1)元,根据购买A型垃圾桶数量是购买B品牌足球数量的2倍列出方程解答即可;
(2)设此次可购买a个B型垃圾桶,则购进A型垃圾桶(50-a)个,根据购买A、B两种垃圾桶的总费用不超过3240元,列出不等式解决问题.【题目详解】(1)设购买一个型垃圾桶需元,则购买一个型垃圾桶需元.由题意得:.解得:.经检验是原分式方程的解.∴.答:购买一个型垃圾桶、型垃圾桶分别需要50元和80元.(2)设此次购买个型垃圾桶,则购进型垃圾桶个,由题意得:.解得.∵是整数,∴最大为1.答:此次最多可购买1个型垃圾桶.【题目点拨】本题考查一元一次不等式与分式方程的应用,正确找出等量关系与不等关系是解决问题的关键.22、(1)如图见解析;(2)△ACE是等腰三角形,证明见解析.【分析】(1)根据角平分线的作法,用尺规作图;(2)根据平行线性质和角平分线定义,可得∠ACE=∠AEC.【题目详解】(1)解:如图即为所求.(2)△ACE是等腰三角形.证明:,∥∴∠ECD=∠AEC,∴∠ACE=∠AEC,△ACE是等腰三角形.【题目点拨】本题考核知识点:角平分线,平行线.解题关键点:理解角平分线定义和平行线性质.23、(1)该商场购进第一批空调的单价2500元;(2)每台空调的标价至少为4000元.【分析】(1)设购进第一批空调的单价为元,则第二批空调的单价为元,用总价除以单价分别得到两批购买的数量,再根据第二批比第一批多15台得到方程求解即可;(2)设标价为元,用表示出总的销售额,然后根据利润率不低于列出不等式求解.【题目详解】解:(1)设购进第一批空调的单价为元,则第二批空调的单价为元,由题意得,解得,经检验,是原方程的解.答:该商场购进第一批空调的单价2500元.(2)设每台空调的标价为元,第二批空调的单价为元,第一批空调的数量为台,第二批空调的数量为台,由题意得,解得答:每台空调的标价至少为4000元.【题目点拨】本题考查分式方程的应用和一元一次不等式的应用,根据总价除以单价等于数量得出方程是关键,分式方程要注意验根.24、一台清雪机每小时晴雪1500立方米.【分析】解设出环卫工人每小时清雪立方米,则一台清雪机每小时清雪立方米,根据等量关系式:一台清雪机清理6000立方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铝矿运输安全责任合同
- 2025年中国涤纶仿真丝市场调查研究报告
- 2025年中国树脂装载器市场调查研究报告
- 2025年中国枕套枕芯市场调查研究报告
- 2025年中国机装式内窥镜市场调查研究报告
- 开店用工合同范本
- 补充合同范本购销合同模板
- 2025年中国大型电动组合玩具市场调查研究报告
- 会所转租合同范本
- 电信租房合同范本
- GB/T 45107-2024表土剥离及其再利用技术要求
- 一年级家长会课件2024-2025学年
- 2024年海南省海口市小升初数学试卷(含答案)
- 家庭装饰装修全过程施工工艺流程(附图)课件
- 工程结算单【范本模板】
- 医院感染管理组织架构图
- 民间非营利组织会计报表模板
- 2020华夏医学科技奖知情同意报奖证明
- 合伙办厂协议书范本(通用5篇)
- 水轮机结构介绍汇总
- 素描石膏几何体
评论
0/150
提交评论