版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省达州通川区五校联考2024届八年级数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题中,为真命题的是()A.直角都相等 B.同位角相等 C.若,则 D.若,则2.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)一定在第四象限C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)3.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.4.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B.C. D.5.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=606.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2 B.1cm2 C.1.5cm2 D.1.25cm27.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.38.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)9.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况10.若把分式中的、都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小一半 D.缩小4倍二、填空题(每小题3分,共24分)11.点(-2,1)点关于x轴对称的点坐标为___;关于y轴对称的点坐标为__.12.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.00000001米)量级的超高精度导电线路,将0.00000001用科学记数法表示应为___________.13.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.14.如图,在平面直角坐标系中,有一个正三角形,其中,的坐标分别为和.若在无滑动的情况下,将这个正三角形沿着轴向右滚动,则在滚动过程中,这个正三角形的顶点,,中,会过点的是点__________.15.已知一个等腰三角形的顶角30°,则它的一个底角等于_____________.16.某学生数学学科课堂表现为分,平时作业为分,期末考试为分,若这三项成绩分别按,,的比例计入总评成绩,则该学生数学学科总评成绩是_______分.17.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.18.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.三、解答题(共66分)19.(10分)已知x=2+1,求20.(6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.21.(6分)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.22.(8分)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.23.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.24.(8分)如图,中,,,,若动点从点开始,按的路径运动,且速度为每秒,设出发的时间为秒.(1)出发2秒后,求的周长.(2)问为何值时,为等腰三角形?(3)另有一点,从点开始,按的路径运动,且速度为每秒,若、两点同时出发,当、中有一点到达终点时,另一点也停止运动.当为何值时,直线把的周长分成的两部分?25.(10分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?26.(10分)如图,在中,.(1)用尺规作图作的平分线,交于;(保留作图痕迹,不要求写作法和证明)(2)若,,求的面积.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据直角、同位角的性质,平方与不等式的性质依次分析即可.【题目详解】A.直角都相等90°,所以此项正确;B.两直线平行,同位角相等,故本选项错误;C.若,则或,故本选项错误;D.若,则,本项正确,故选A.【题目点拨】本题考查的是命题与定理,熟知各项性质是解答此题的关键.2、C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【题目详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.故选C.【题目点拨】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键3、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【题目详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【题目点拨】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.4、D【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【题目详解】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,
第一组到达乙地的时间为:7.5÷1.2x;
第二组到达乙地的时间为:7.5÷x;
∵第一组比第二组早15分钟(小时)到达乙地,
∴列出方程为:.故选:D.【题目点拨】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.5、C【解题分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了1分”列出方程.【题目详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=1.故选C.【题目点拨】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.6、B【分析】依据三角形的面积公式及点D、E、F分别为边BC,AD,CE的中点,推出从而求得△BEF的面积.【题目详解】解:∵点D、E、F分别为边BC,AD,CE的中点,∵△ABC的面积是4,
∴S△BEF=2.故选:B【题目点拨】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S=×底×高,得出等底同高的两个三角形的面积相等.7、D【分析】本题考查二次根式的化简,.【题目详解】.故选D.【题目点拨】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.8、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【题目详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【题目点拨】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.9、A【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,【题目详解】解:从图中可以看出各项消费金额占消费总金额的百分比.故选A.10、C【分析】可将式中的x,y都用2x,2y来表示,再将后来的式子与原式对比,即可得出答案.【题目详解】解:由题意,分式中的x和y都扩大2倍,∴=,分式的值是原式的,即缩小一半,故选:C.【题目点拨】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变,掌握知识点是解题关键.二、填空题(每小题3分,共24分)11、(-2,-1)、(2,1)【解题分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变点(-2,1)关于x轴对称的点的坐标是(-2,-1),点(-2,1)关于y轴对称的点的坐标是(2,1),12、【分析】科学计数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往右移动到1的后面,所以=-1.【题目详解】0.00000001=故答案为.【题目点拨】本题考查的知识点是用科学计数法表示绝对值较大的数,关键是在理解科学计数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.13、1.【解题分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【题目详解】解:根据勾股定理可得a2+b2=13,
四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,
则(a-b)2=a2-2ab+b2=13-12=1.
故答案为:1.【题目点拨】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.14、C【分析】先得到三角形的边长为1,再计算2020-2=2018,2018÷3=672……2,而672=224×3,即向右滚动672个60°后点A过点(2020,0),此时再绕A滚动60°点C过点(2020,1).【题目详解】∵C,B的坐标分别为(2,0)和(1,0),∴三角形的边长为1,∴三角形每向右滚动60°时,其中一个点的纵坐标为,∵2020-2=2018,2018÷3=672,而672=224×3,∴点A过点(2020,0),∴点C过点(2020,1).故答案为C.【题目点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,1.15、75°【分析】已知明确给出等腰三角形的顶角是30°,根据等腰三角形的性质及三角形的内角和定理易求得底角的度数.【题目详解】解:∵等腰三角形的顶角是30°,
∴这个等腰三角形的一个底角=(180°-30°)=75°.
故答案为:75°.【题目点拨】此题考查了等腰三角形的性质及三角形内角和定理,此题很简单,解答此题的关键是熟知三角形内角和定理及等腰三角形的性质.16、92.1【分析】根据加权平均数的计算方法可以求得该生数学学科总评成绩,从而可以解答本题.【题目详解】解:由题意可得,95×30%+92×30%+90×40%=92.1(分),故答案为:92.1.【题目点拨】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.17、150cm【解题分析】试题解析:如图,彩色丝带的总长度为=150cm.
18、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【题目详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【题目点拨】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.三、解答题(共66分)19、-1(x-1)2,当x=【解题分析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x的值,进行二次根式化简.试题解析:(x+1当x=2+1时,原式考点:1.分式的化简;2.二次根式化简.20、小芳的速度是50米/分钟.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【题目详解】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.21、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF=∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC=∠ABC,∠CBD=∠CDB,而∠ACB+∠DCB=270°,则可根据三角形的内角和定理推出∠ABC+∠CBD=45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【题目详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°.∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC=∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关于x轴对称,∴AO=BO=1,AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=1,即OF的长不会变化;方法2:如图2,连接AF交CD于点M,∵点A与点B关于x轴对称,∴AC=BC,AF=BF,∴∠OAC=∠OBC,∠OAF=∠OBF,∴∠OAF−∠OAC=∠OBF−∠OBC,即∠CAF=∠CBF,∵AC=CD,AC=BC,∴BC=CD,∴∠CBF=∠CDF,∴∠CAF=∠CDF,又∵∠AMC=∠DMF,∴∠AFD=∠ACD=90°,∴∠AFB=90°,∴∠AFO=∠OFB=45°,∴∠AFO=∠OAF=45°,∴OF=OA=1,即OF的长不会变化.【题目点拨】本题以直角坐标系为载体,主要考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形的内角和定理、轴对称的性质和等腰三角形的性质等知识,涉及的知识点多,属于常考题型,熟练掌握上述基本知识是解题的关键.22、(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解题分析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.23、(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【题目详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【题目点拨】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.24、(1)cm;(2)当为3秒、5.4秒、6秒、6.5秒时,为等腰三角形;(3)或或秒【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长;(2)分点P在边AC上和点P在边AB上两种情况求解即可;(3)分类讨论:①当点在上,在上;②当点在上,在上;③当点在上,在上.【题目详解】解:(1)如图1,由,,,∴,动点从点开始,按的路径运动,且速度为每秒,∴出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 226湖南郴州市宜章县妇幼保健院招募见习生2人备考题库及答案1套
- 中国航天科技集团有限公司五院五一三所2026届秋季校招参考题库新版
- 2026陆军工程大学社会招聘8人备考题库附答案
- 2026重庆涪陵区人民政府义和街道选聘4人备考题库附答案
- 2026重庆市合川区人民医院招聘8人备考题库新版
- 2026陕西榆林市横山区石窑沟卫生院招聘4人参考题库完美版
- 招12人!湟源县人民医院2026年第一次公开招聘编外专业技术人员备考题库含答案
- 2026陕西能源职业技术学院博士招聘40人备考题库新版
- 2026陕西延安大学附属医院招聘专业技术人员118人参考题库完美版
- 中国华录集团有限公司2026届校园招聘备考题库新版
- 鞍钢集团电子招投标交易平台简明操作手册
- 门店运营年终总结汇报
- 2025年中国流体动压轴承市场调查研究报告
- 快递行业运营部年度工作总结
- 《苏教版六年级》数学上册期末总复习课件
- 上海市二级甲等综合医院评审标准(2024版)
- 油漆班组安全晨会(班前会)
- 消费类半固态电池项目可行性研究报告
- 山东省济南市2024年1月高二上学期学情期末检测英语试题含解析
- 口腔门诊医疗质控培训
- (正式版)JBT 9229-2024 剪叉式升降工作平台
评论
0/150
提交评论