版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省武汉六中上智中学八年级数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用代入法解方程组时消去y,下面代入正确的是()A. B. C. D.2.当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A.y=kx﹣2(k≠0) B.y=kx+k+2(k≠0)C.y=kx﹣k+2(k≠0) D.y=kx+k﹣2(k≠0)3.直角三角形的两条边长分别是5和12,它的斜边长为()A.13 B. C.13或12 D.13或4.如图所示,AB∥CD,O为∠BAC、∠ACD的平分线交点,OE⊥AC于E,若OE=2,则AB与CD之间的距离是()A.2 B.4 C.6 D.85.一个长方形的长是2xcm,宽比长的一半少4cm,若将这个长方形的长和宽都增加3cm,则该长方形的面积增加了().A.9cm2 B.(2x2x3)cm2 C.7x3cm2 D.9x3cm26.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5来加固钢架,若P1A=P1P2,∠P5P4B=95°,则a等于()A.18° B.23.75° C.19° D.22.5°7.已知x=2my=3m是二元一次方程2x+y=14的解,则m的值是(A.2 B.-2 C.3 D.-38.如图,在中,,是边上的高,,,则的长为()A. B. C. D.9.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.10.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个11.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,812.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.二、填空题(每题4分,共24分)13.已知,分别是的整数部分和小数部分,则的值为_______.14.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.15.已知是完全平方式,则的值为_________.16.已知,如图,在直线l的两侧有两点A、B在直线上画出点P,使PA+PB最短,画法:______.17.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.18.分解因式:=________________.三、解答题(共78分)19.(8分)解方程与不等式组(1)解方程:(2)解不等式组20.(8分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?21.(8分)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.22.(10分)已知,,求的值.23.(10分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).24.(10分)观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为;(2)猜想:第n个等式为(用含n的代数式表示),并证明.25.(12分)阅读:对于两个不等的非零实数、,若分式的值为零,则或.又因为,所以关于的方程有两个解,分别为,.应用上面的结论解答下列问题:(1)方程的两个解分别为、,则,;(2)方程的两个解中较大的一个为;(3)关于的方程的两个解分别为、(),求的26.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.
参考答案一、选择题(每题4分,共48分)1、D【分析】方程组利用代入消元法变形得到结果,即可作出判断.【题目详解】用代入法解方程组时,把y=1-x代入x-2y=4,得:x-2(1-x)=4,去括号得:,故选:D.【题目点拨】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解题分析】把已知点(﹣1,2)代入选项所给解析式进行判断即可.【题目详解】在y=kx﹣2中,当x=﹣1时,y=﹣k﹣2≠2,故A选项不合题意,在y=kx+k+2中,当x=﹣1时,y=﹣k+k+2=2,故B选项符合题意,在y=kx﹣k+2中,当x=﹣1时,y=﹣k﹣k﹣2=﹣2k﹣2≠2,故C选项不合题意,在y=kx+k﹣2中,当x=﹣1时,y=﹣k+k﹣2=﹣2≠2,故D选项不合题意,故选B.【题目点拨】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.3、A【分析】直接利用勾股定理即可解出斜边的长.【题目详解】解:由题意得:斜边长=,故选:A.【题目点拨】本题主要考查勾股定理,掌握勾股定理的基本运用是解答本题的关键.4、B【分析】过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.【题目详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=1,即AB与CD之间的距离是1.故选B.【题目点拨】此题主要考查了角平分线的性质和平行线之间的距离;熟练掌握角平分线的性质定理是解决问题的关键.5、D【分析】根据题意列出算式,然后利用整式混合运算的法则进行化简即可.【题目详解】解:长方形的长是2xcm,则宽为(x-4)cm,由题意得:,∴该长方形的面积增加了cm2,故选:D.【题目点拨】本题考查了整式混合运算的实际应用,解题关键是能够根据题意列出代数式.6、C【分析】已知∠A=,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P5P4B=5,且∠P5P4B=95°,即可求解.【题目详解】∵P1A=P1P2=P2P3=P3P4=P4P5∴∠A=∠AP2P1=∴∵∠P5P4B=∴故选:C【题目点拨】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和.7、A【解题分析】根据方程的解的定义,将方程1x+y=14中x,y用m替换得到m的一元一次方程,进行求解.【题目详解】将x=2my=3m代入二元一次方程1x+y=147m=14,解得m=1.故选A.【题目点拨】考查了二元一次方程的解的定义,只需把方程的解代入,进一步解一元一次方程即可.8、A【解题分析】由题意根据含30度角的直角三角形的性质即在直角三角形中,30°角所对的直角边等于斜边的一半,进行分析即可解答.【题目详解】解:∵,,∴,∵是边上的高,即,∴,即为含30度角的直角三角形,∵,∴.故选:A.【题目点拨】本题主要考查直角三角形的性质,关键是掌握含30度角的直角三角形的性质即在直角三角形中,30°角所对的直角边等于斜边的一半进行分析解题.9、D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【题目详解】解:,,∵,∴,整理,得,∴,∴.故选D.【题目点拨】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.10、B【题目详解】解:在实数,,,,中,其中,,是无理数.故选:B.11、C【分析】根据三角形的三边关系进行分析判断.【题目详解】根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.【题目点拨】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.12、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、【分析】先求出介于哪两个整数之间,即可求出它的整数部分,再用减去它的整数部分求出它的小数部分,再代入即可.【题目详解】∵,∴=,∴,∴,∴.【题目点拨】此题考查的是带根号的实数的整数部分和小数部分的求法,找到它的取值范围是解决此题的关键.14、1【解题分析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【题目详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【题目点拨】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.15、【分析】根据完全平方公式:,即可求出m的值【题目详解】解:∵是完全平方式,∴∴故答案为:【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.16、连接AB交直线l于P【分析】连接AB交直线l于P,根据两点之间线段最短可得AB为PA+PB的最小值,即可得答案.【题目详解】如图,连接AB,交直线l于P,∵两点之间线段最短,∴AB为PA+PB的最小值,故答案为:连接AB交直线l于P【题目点拨】本题考查作图,熟练掌握两点之间线段最短是解题关键.17、()2018【解题分析】首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.【题目详解】解:∵△ABC是腰长为1的等腰直角三形,
∴△ABC的斜边长是,第2个等腰直角三角形的斜边长是:×=()2,第3个等腰直角三角形的斜边长是:()2×=()3,…,
∴第2012个等腰直角三角形的斜边长是()2018.故答案为()2018.【题目点拨】本题考查勾股定理和等腰三角形的特征和应用,解题关键是要熟练掌握勾股定理,注意观察总结出规律.18、【分析】先提公因式,再利用平方差公式分解即可.【题目详解】解:故答案为:【题目点拨】本题考查的是提公因式法与利用平方差公式进行因式分解,掌握因式分解的方法是解题的关键.三、解答题(共78分)19、(1);(2)【分析】(1)先把分母化为相同的式子,再进行去分母求解;(2)依次解出各不等式的解集,再求出其公共解集.【题目详解】解:(1)原分式方程可化为,方程两边同乘以得:解这个整式方程得:检验:当,所以,是原方程的根(2)解不等式①得:解不等式②得:不等式①、②的解集表示在同一数轴上:所以原不等式组的解集为:【题目点拨】此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.20、(1)8元;(2)1元.【分析】(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【题目详解】解:(1)设第一批手机壳进货单价为x元,
根据题意得:3•=,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批手机壳的进货单价是8元;
(2)设销售单价为m元,
根据题意得:200(m-8)+600(m-10)≥2000,
解得:m≥1.
答:销售单价至少为1元.【题目点拨】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.21、原计划每天加工这种彩灯的数量为300套.【分析】该灯具厂原计划每天加工这种彩灯的数量为套,由题意列出方程:,解方程即可.【题目详解】解:该灯具厂原计划每天加工这种彩灯的数量为套,则实际每天加工彩灯的数量为套,由题意得:,解得:,经检验,是原方程的解,且符合题意;答:该灯具厂原计划每天加工这种彩灯的数量为300套.【题目点拨】考核知识点:分式方程应用.理解题意,列出分式方程并解是关键.22、-1.【分析】先对多项式进行因式分解,再代入求值,即可得到答案.【题目详解】,当,时,原式.【题目点拨】本题主要考查代数式求值,掌握提取公因式法和完全平方公式分解因式,是解题的关键.23、见解析【分析】利用数形结合的思想解决问题即可.【题目详解】解:由题意梯形的面积为18,剪一个三角形面积为9即可;取两底的中点,连接这两个点得到的线段平分梯形的面积.【题目点拨】本题考查作图应用与设计,梯形的面积,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.24、(1)36﹣35=2×35;(2)3n+1﹣3n=2×3n.【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n个等式的底数不变,指数依次分别是n+1、n、n.【题目详解】解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为36﹣35=2×35;(2)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第n个等式的底数不变,指数依次分别是n+1、n、n,即3n+1﹣3n=2×3n.证明:左边=3n+1﹣3n=3×3n﹣3n=3n×(3﹣1)=2×3n=右边,所以结论得证.故答案为3n+1﹣3n=2×3n.【题目点拨】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.25、(1)-6,1;(2)7;(3)见解析【分析】(1)根据题意可知p=x1•x2,q=x1•x2,代入求值即可;(2)方程变形后,利用题中的结论确定出两个解中较大的解即可;(3)方程变形后,根据利用题中的结论表示出为x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022幼儿园元旦活动总结范文5篇
- 2022年建筑施工工作总结三篇
- 豫满全球电商培训
- 石河子大学《足球》2022-2023学年第一学期期末试卷
- 石河子大学《食品工艺学实验》2022-2023学年第一学期期末试卷
- 石河子大学《心理测量学》2022-2023学年第一学期期末试卷
- 石河子大学《家畜环境卫生学》2023-2024学年第一学期期末试卷
- 石河子大学《法律文书》2023-2024学年期末试卷
- 沈阳理工大学《商务俄语翻译》2023-2024学年第一学期期末试卷
- 沈阳理工大学《建筑设计》2021-2022学年第一学期期末试卷
- 合理用药健康教育教学课件
- 初三【语文(统编)】《范进中举》中人物丑态的表现课件2
- 家庭教育重要性-课件
- HCCDP 云迁移认证理论题库
- 托伐普坦药物治疗进展课件
- 新《煤矿安全规程》第10讲 《煤矿安全规程》关于井下电气事故防治规定
- 做一粒种子中考满分作文(8篇)
- 非饱和土力学培训讲义绪论
- 2021儿童体格发育评估与管理临床实践专家共识
- 建筑工程概预算知到章节答案智慧树2023年浙江广厦建设职业技术大学
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
评论
0/150
提交评论