




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省武汉市市新观察八年级数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定2.如图,点在上,且,若要使≌,可补充的条件不能是()A. B.平分 C. D.3.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.84.下面命题的逆命题正确的是()A.对顶角相等 B.邻补角互补C.矩形的对角线互相平分 D.等腰三角形两腰相等5.若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.86.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n7.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.188.若点与点关于轴对称,则的值是()A.-2 B.-1 C.0 D.19.能说明命题“对于任何实数a,都有>-a”是假命题的反例是()A.a=-2 B.a C.a=1 D.a=210.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA11.下列二次根式,最简二次根式是()A.8 B.12 C.5 D.12.若,则下列各式成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.将0.0021用科学记数法表示为___________.14.“宝剑锋从磨砺出,梅花香自苦寒来”喻义要想拥有珍贵品质或美好才华等是需要不断的努力、修炼、克服一定的困难才能达到的据有关资料显示,梅花的花粉直径大约是0.00002米,数字0.00002用科学记数法表示为______15.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率为______________.16.在中,是中线,是高,若,,则的面积__________.17.已知一个样本:98,99,100,101,1.那么这个样本的方差是_____.18.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;三、解答题(共78分)19.(8分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.20.(8分)一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.21.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DE,BE=CF,AB∥DE.求证:AC∥DF22.(10分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.23.(10分)解不等式,并利用数轴确定该不等式组的解.24.(10分)如图,已知A(-1,2),B(-3,1),C(-4,3).(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)作△ABC关于直线l1:y=-2(直线l1上各点的纵坐标都为-2)的对称图形△A2B2C2,写出点C关于直线l1的对称点C2的坐标.(3)作△ABC关于直线l2:x=1(直线l2上各点的横坐标都为1)的对称图形△A3B3C3,写出点C关于直线l2的对称点C3的坐标.(4)点P(m,n)为坐标平面内任意一点,直接写出:点P关于直线x=a(直线上各点的横坐标都为a)的对称点P1的坐标;点P关于直线y=b(直线上各点的纵坐标都为b)的对称点P2的坐标.25.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.26.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【题目详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【题目点拨】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.2、D【分析】根据全等三角形的判定方法即可依次判断.【题目详解】A、∵,,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;B、平分,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;C、∵∠1=∠2,1+∠ABC=180,∠2+∠ABD=180,∴∠ABC=∠ABD,又、AB=AB,根据SAS即可推出≌,正确,故本选项错误;D、根据和AB=AB,∠ABC=∠ABD不能推出≌,错误,故本选项正确;故选:D.【题目点拨】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【题目详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【题目点拨】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.4、D【分析】先分别写出四个命题的逆命题,然后利用对顶角的定义、邻补角的定义、矩形的判断和等腰三角形的判定方法对各命题的真假进行判断.【题目详解】解:A.对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;B.邻补角互补的逆命题为互补的角为邻补角,此逆命题为假命题;C.矩形的对角线互相平分的逆命题为对角线互相平分的四边形为矩形,此逆命题为假命题;D.等腰三角形两腰相等的逆命题为两边相等的三角形为等腰三角形,此逆命题为真命题.故答案为D.【题目点拨】本题考查了命题与定理,掌握举出反例法是判断命题的真假的重要方法.5、C【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【题目详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【题目点拨】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6、D【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD,AC=AB=m,进而即可求解.【题目详解】∵AB的垂直平分线MN交AC于点D,顶角∠A=40°,∴AD=BD,AC=AB=m,∴△DBC的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n.故选:D.【题目点拨】本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.7、D【分析】分别设设甲、乙两校转出的人数分别为人、人,甲、乙两校转入的人数分别为人、人,根据寒假结束开学时甲、乙两校人数相同,可列方程求解即可解答.【题目详解】设甲、乙两校转出的人数分别为人、人,甲、乙两校转入的人数分别为人、人,
∵寒假结束开学时甲、乙两校人数相同,
∴,
整理得:,
开学时乙校的人数为:(人),
∴乙校开学时的人数与原有的人数相差;1028-1010=18(人),
故选:D.【题目点拨】本题考查了二元一次方程的应用,解决本题的关键是根据题意列出方程.8、D【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【题目详解】解:∵点与点关于y轴对称,
∴,,
解得:m=3,,n=−2,
所以m+n=3−2=1,
故选:D.【题目点拨】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.9、A【分析】先根据假命题的定义将问题转化为求四个选项中,哪个a的值使得不成立,再根据绝对值运算即可得.【题目详解】由假命题的定义得:所求的反例是找这样的a值,使得不成立A、,此项符合题意B、,此项不符题意C、,此项不符题意D、,此项不符题意故选:A.【题目点拨】本题考查了命题的定义、绝对值运算,理解命题的定义,正确转为所求问题是解题关键.10、B【解题分析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.11、C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12、C【分析】根据不等式的性质逐项判断即可.【题目详解】A、,,此项错误B、,,此项错误C、在A选项已求得,两边同加2得,此项正确D、,,此项错误故选:C.【题目点拨】本题考查了不等式的性质:(1)不等式的两边同加(或同减)一个数,不改变不等号的方向;(2)不等式的两边同乘以(或除以)一个正数,不改变不等号的方向;两边同乘以(或除以)一个负数,改变不等号的方向,熟记性质是解题关键.二、填空题(每题4分,共24分)13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】,故答案为:.【题目点拨】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.14、2×10-5【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.00002=2×10-5,故答案为:2×10-5【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、0.1【分析】先求出第5组的频数,根据频率=频数总数,再求出频率即可.【题目详解】解:由题可知:第5组频数=40-12-10-6-8=4,440=0.1故答案是0.1【题目点拨】本题考查了数据的统计,属于简单题,熟悉频率的求法是解题关键.16、2【分析】根据中线的定义求出DC的长,再根据三角形的面积公式即可得出结论.【题目详解】∵AD是中线,∴BD=DC=BC=1.△ADC的面积=DC•AH=×1×6=2.故答案为:2.【题目点拨】本题查考了三角形的中线和三角形的面积公式.掌握三角形中点的性质是解答本题的关键.17、2【分析】根据方差公式计算即可.方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【题目详解】解:这组样本的平均值为=(98+99+100+101+1)=100S2=[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(1﹣100)2]=2故答案为2.【题目点拨】本题考查方差的定义.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,18、25或7【解题分析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.三、解答题(共78分)19、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解题分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【题目详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【题目点拨】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、梯子的顶端下滑2米后,底端将水平滑动2米【解题分析】根据题意两次运用勾股定理即可解答【题目详解】解:由题意可知,AB=10m,AC=8m,AD=2m,在Rt△ABC中,由勾股定理得BC===6;当B划到E时,DE=AB=10m,CD=AC﹣AD=8﹣2=6m;在Rt△CDE中,CE===8,BE=CE﹣BC=8﹣6=2m.答:梯子的顶端下滑2米后,底端将水平滑动2米.【题目点拨】本题考查了勾股定理的应用,根据两边求第三边是解决问题的关键21、见解析【分析】根据SAS证明△ABC≌△DEF全等,从而得到∠ACB=∠F,再得到AC//DF.【题目详解】∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF,∴∠ACB=∠F,∴AC//DF.【题目点拨】考查了全等三角形的判定和性质以及平行线的判定和性质,解题关键是利用SAS证明△ABC≌△DEF.22、(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.【分析】(1)设学校购进黑文化衫x件,白文化衫y件,根据两种文化衫200件共花费4800元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=每件利润×数量,即可求出结论.【题目详解】解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45-25)×160+(35-20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.【题目点拨】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23、,在数轴上的表示见解析.【分析】先分别求出两个不等式的解,再利用数轴确定它们解的公共部分,即可得出不等式组的解集.【题目详解】不等式①,移项合并同类项、系数化为1得不等式②,去分母得去括号得移项合并同类项、系数化为1得将不等式①、②的解在数轴上表示如下:
故原不等式组的解集为.【题目点拨】本题考查了不等式组的解法,熟记不等式组的解法是解题关键.24、(1)图见解析;C1的坐标为(-4,-3);(2)图见解析;C2的坐标为(-4,-7);(3)图见解析;C3的坐标为(6,3);(4)点P1的坐标为(2a-m,n);P2的坐标为(m,2b-n)【分析】(1)根据x轴为对称轴,利用轴对称的性质,即可得到△ABC关于x轴的对称图形△A1B1C1,进而得到点C关于x轴的对称点C1的坐标;(2)根据直线1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC关于直线1:y=-2的对称图形△A2B2C2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 畜禽产品质量追溯考核试卷
- 2025小学数学课程标准解读
- 羽绒市场细分与定位考核试卷
- 生态保护与气候变化适应性措施考核试卷
- 电梯行业发展趋势与市场分析考核试卷
- 剖宫产护理查房
- 木结构建筑加固技术考核试卷
- 港口客运与云计算服务考核试卷
- 幼儿园清明森林防火教育课程
- 脂肪栓塞综合征护理措施
- 理综-新疆乌鲁木齐市2024年高三三模考试试题和答案
- 聋哑人辅助交流系统
- 带状疱疹病人的个案护理
- 《中药鉴定技术》课件-五味子的鉴定
- 大数据 AI大模型-智慧统计大数据平台解决方案(2023版)
- 江苏省安全员《B证》考试题库及答案
- 自杀及其预防课件
- 灰姑娘童话故事
- 铅锌矿的冶炼技术进展与设备改进
- 等离子切割机操作手册与安全操作规程
- 印刷合同:纸袋印刷合作
评论
0/150
提交评论