版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年吉林省辽源市高职单招数学自考测试卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.已知点M(1,2)为抛物线y²=4x上的点,则点M到该抛物线焦点的距离为()
A.10B.8C.3D.2
2.不等式(x-1)(x-2)<2的解集是()
A.{x∣x<3}B.{x∣x<0}C.{x∣0<x3}
3.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
4.将5封信投入3个邮筒,不同的投法共有()
A.5^3种B.3^5种C.3种D.15种
5.数轴上的点A到原点的距离是3,则点A表示的数为()
A.3或-3B.6C.-6D.6或-6
6.扔两个质地均匀的骰子,则朝上的点数之和为5的概率是()
A.1/6B.1/9C.1/12D.1/18
7.已知圆x²+y²=a与直线z+y-2=0相切,则a=()
A.2√2B.2C.3D.4
8.f(-1)是定义在R上是奇函数,且对任意实数x,有f(x+4)=f(x),若f(-1)=3.则f(4)+f(5)=()
A.-3B.0C.3D.6
9.以圆x²+2x+y²=0的圆心为圆心,半径为2的圆的方程()
A.(x+1)²+y²=2B.(x+1)²+y²=4C.(x−1)²+y²=2D.(x−1)²+y²=4
10.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是()
A.6B.7C.8D.9
11.下列幂函数中过点(0,0),(1,1)的偶函数是()
A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)
12.在等差数列{an}中,a1=2,a3+a5=10,则a7=()
A.5B.8C.10D.12
13.已知集合A={2,3,4},B={3,4,5},则A∩B()
A.{2,5}B.{2,3,4,5}C.{3,4}D.{3,5}
14.“0<x<1”是“x²
A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件
15.两条平行直线l₁:3x+4y-10=0和l₂:6x+8y-7=0的距离为()
A.1B.17C.13D.13/10
16.设命题p:x>3,命题q:x>5,则()
A.p是q的充分条件但不是q的必要条件
B.p是q的必要条件但不是q的充分条件
C.p是q的充要条件
D.p不是q的充分条件也不是q的必要条件
17.已知函数f(x)=|x|,则它是()
A.奇函数B.偶函数C.既是奇函数又是偶函数D.无法判断
18.不等式|x-1|<2的解集为()
A.y=x²B.y=x²-xC.y=x³D.y=1/x
19.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
20.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种B.24种C.30种D.36种
21.已知向量a=(2,t),b=(1,2),若a∥b,则t=()
A.t=-4B.t=-1C.t=1D.t=4
22.已知向量a=(-1,2),b=(0,-1),则a·(-b)=()
A.-2B.2C.-1D.1
23.函数f(x)=x²-2x-3()
A.在(-∞,2)内为增函数
B.在(-∞,1)内为增函数
C.在(1,+∞)内为减函数
D.在(1,+∞)内为增函数
24.已知点A(-2,2),B(1,5),则线段AB的中点坐标为()
A.(-1,7)B.(3/2,3/2)C.(-3/2,-3/2)D.(-1/2,7/2)
25.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()
A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0
26.log₄64-log₄16等于()
A.1B.2C.4D.8
27.已知向量a=(2,1),b=(3,5),则|2a一b|=
A.2B.√10C.√5D.2√2
28.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()
A.4B.3C.2D.0
29.若P是两条异面直线l,m外的任意一点,则()
A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
C.过点P有且仅有一条直线与l,m都相交
D.过点P有且仅有一条直线与l,m都异面
30.若平面α//平面β,直线a⊂α,直线b⊂β那么直线a、b的位置关系是()
A.垂直B.平行C.异面D.不相交
31.“x<1”是”“|x|>1”的()
A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件
32.不在3x+2y<6表示的平面区域内的点是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)
33.某射手射中10环的概率为0.28,射中9环的概率为0.24,射中8环的概率为0.19,则这个射手一次射中低于8环的概率为()
A.0.71B.0.29C.0.19D.0.52
34."x<0"是“ln(x+1)<0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
35.样本5,4,6,7,3的平均数和标准差为()
A.5和2B.5和√2C.6和3D.6和√3
36.与直线x-y-7=0垂直,且过点(3,5)的直线为()
A.x+y−8=0B.x-y+2=0C.2x-y+8=0D.x+2y+1=0
37.某市教委为配合教育部公布高考改革新方案,拟定在B中学生进行调研,广泛征求高三年级学生的意见。B中学高三年级共有700名学生,其中理科生500人,文科生200人,现采用分层抽样的方法从中抽取14名学生参加调研,则抽取的理科生的人数为()
A.2B.4C.5D.10
38.经过两点A(4,0),B(0,-3)的直线方程是()
A.3x-4y-12=0
B.3x+4y-12=0
C.4x-3y+12=0
D.4x+3y+12=0
39.抛物线y²=4x的准线方程是()
A.x=-1B.x=1C.y=-1D.y=-1
40.函数2y=-x²x+2()
A.有最小值1B.有最小值3C.有最大值1D.有最大值3
41.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()
A.4B.6C.10D.16
42.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()
A.12种B.18种C.36种D.54种
43.设f((x)是定义在R上的奇函数,已知当x≥0时,f(x)=x³-4x³,则f(-1)=()
A.-5B.-3C.3D.5
44.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下列抽样方法中,最合理的抽样方法是()
A.简单随机抽样B.简单随机抽样C.按学段分层抽样D.系统抽样
45.不等式x²-3x-4≤0的解集是()
A.[-4,1]B.[-1,4]C.(-∞,-l]U[4,+∞)D.(-∞,-4]U[1,+∞)
46.“ab>0”是“a/b>0”的()
A.充分不必要条件B.必要不充分条件C.必要不充分条件D.既不充分也不必要条件
47.已知向量a=(x,-3),b=(3,1),若a⊥b,则x=()
A.-9B.9C.-1D.1
48.已知α∈(Π/2,Π),cos(Π-α)=√3/2,则tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
49.盒内装有大小相等的3个白球和1个黑球,从中摸出2个球,则2个球全是白球的概率是()
A.3/4B.2/3C.1/3D.1/2
50.设集合M={x│0≤x<3,x∈N},则M的真子集个数为()
A.3B.6C.7D.8
二、填空题(20题)51.不等式|8-2x|≤3的解集为________。
52.已知圆x²+y²一2kx+2y+1=0(k>0)的面积为16Π,则k=________。
53.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
54.已知直线方程为y=3x-5,圆的标准方程为(x+1)²+(y-2)²=25,则直线与圆的位置关系是直线与圆________(填“相切”相交”或“相离”)
55.首项a₁=2,公差d=3的等差数列前10项之和为__________。.
56.已知函数y=2x+t经过点P(1,4),则t=_________。
57.已知cos(Π-a)=1/2,则cos2a=_________。
58.已知过抛物线y²=4x焦点的直线l与抛物有两个交点A(x₁,y₁)和B(x₂,y₂)如果x₁+x₂=6,则|AB|=_________。
59.已知数据x₁,x₂,x₃,x₄,x₅,的平均数为80,则数据x₁+1,x₂+2,x₃+3,x₄+4,x₅+5的平均数为________。
60.圆M:x²+4x+y²=0上的点到直l:y=2x-1的最短距离为________。
61.已知二次函数y=x²-mx+1的图象的对称轴方程为=2则此函数的最小值为________。
62.若函数f(x)=x²+(b-3)x+2是偶函数,则b=________,增区间为________。
63.不等式x²-2x≤0的解集是________。
64.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;
65.已知点A(1,2)和B(3,-4),则以线段AB为直径的圆的标准方程是________。
66.同时投掷两枚骰子,则向上的点数和是9的概率是________。
67..已知数据x₁,x₂,……x₂₀的平均数为18,则数据x₁+2,,x₂+2,x₂₀+2的平均数是______。
68.不等式|1-3x|的解集是_________。
69.函数y=(cos2x-sin2x)²的最小正周期T=________。
70.已知sin(a+b)cosa-cos(a+b)sina=-m,且b是第二象限的角,则cosb=________。
三、计算题(10题)71.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
72.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
73.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积
74.解下列不等式x²>7x-6
75.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
76.求函数y=cos²x+sinxcosx-1/2的最大值。
77.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
78.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
79.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B
80.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
参考答案
1.D
2.C[答案]C[解析]讲解:不等式化简为x²-3x<0,解得答案为0<x<3
3.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
4.B[解析]讲解:由于每一封信都有三种选择,则共有3^5种方法
5.A
6.B
7.C
8.A
9.B[解析]讲解:圆的方程,重点是将方程化为标准方程,(x+1)²+y²=1,半径为2的话方程为(x+1)²+y²=4
10.C[解析]讲解:集合子集的考察,首先求A∩B={0,2,4}有三个元素,则子集的个数为2^3=8,选C
11.B[解析]讲解:函数图像的考察,首先验证是否过两点,C定义域不含x=0,因为分母有自变量,然后验证偶函数,A选项定义域没有关于原点对称,D选项可以验证是奇函数,答案选B。
12.B因为a3+a5=2a4=10,所以a4=5,所以d=(a4-a1)/(4-1)=1所以a7=a1+6d=8.考点:等差数列求基本项.
13.C
14.A
15.D
16.B考查充要条件概念,x>5=>x>3,所以p是q的必要条件;又因为x>3=>x>>5,所以p不是q的充分条件,故选B.考点:充分必要条件的判定.
17.B
18.A
19.D
20.B[解析]讲解:C²₄*2*2=24
21.Da(2,t),b(1,2),因为a∥b,所以2*t-1*t=0,t=4,故选D.考点:平面向量共线.
22.B
23.D
24.D考点:中点坐标公式应用.
25.D
26.A
27.B
28.D
29.B
30.D[解析]讲解:两面平行不会有交点,面内的直线也不可能相交,选D
31.B
32.D
33.B
34.B[解析]讲解:由ln(x+1)<0解得-1<x<0;然而x<0不能推出-1<x
35.B
36.D[答案]A[解析]讲解:直线方程的考查,两直线垂直则斜率乘积为-1,选A,经验证直线过点(3,5)。
37.D分层抽样就是按比例抽样,由题意得:抽取的理科生人数为:14/700*500=10选D.考点:分层抽样.
38.A由直线方程的两点式可得经过两点两点A(4,0),B(0,-3)的直线方程为:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故选A.考点:直线的两点式方程.
39.A
40.D
41.D
42.B[解析]讲解:3C₄²C₄²=18种
43.C
44.C
45.B
46.C
47.D
48.A
49.D
50.C[解析]讲解:M的元素有3个,子集有2^3=8个,减去一个自身,共有7个真子集。
51.[5/2,11/2]
52.4
53.33
54.相交
55.155
56.2
57.-1/2
58.8
59.83
60.√5-2
61.-3
62.3,[0,+∞]
63.[0,2]
64.5
65.(x-2)²+(y+1)²=10
66.1/9
67.20
68.(-1/3,1)
69.Π/2
70.-√(1-m²)
71.5
72.4/7
73.解:由余弦定理b²=a²+c²-2ac·cosB,得(2√2)²=a²+(√5)²-2·a×√5×√5/5,所以a²-2a-3=0所以a=3或a=-1(舍去)(2)因为cosB=√5/5,由平方关系得:sinB=(2√5)/5,所以S△ABC=1/2asinB=1/2×3×√5×(2√5)/5=3a=3,面积为3。
74.解:因为x²>7x-6所以x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物资采购合同管理规定
- 二零二五年度柴油运输行业竞业禁止与市场调研合同3篇
- 2025年度全新竞业协议失效一个月竞业限制解除申请总结3篇
- 2025年度农业机械作业与农业废弃物资源化利用合作协议3篇
- 二零二五年度水泥行业节能减排合作协议3篇
- 二零二五年度绿色能源解决方案整体转让合同版3篇
- 二零二五年度企业风险管理及内部控制优化合同3篇
- 2025年度教育机构教育资源转让协议3篇
- 2025年度男女朋友共同购房及按揭还款协议3篇
- 2025年度建筑废弃物资源化利用合同书模板3篇
- 高考日语基础归纳总结与练习(一轮复习)
- 装配式混凝土建筑构件识图-叠合板识读(装配式混凝土建筑)
- 会计科目涉税风险点风险
- 香椿矮化密植栽培
- GB/T 4214.3-2023家用和类似用途电器噪声测试方法洗碗机的特殊要求
- 建设工程质量控制讲义三
- YY/T 0606.7-2008组织工程医疗产品第7部分:壳聚糖
- 2023年辽宁轨道交通职业学院高职单招(英语)试题库含答案解析
- GB/T 29076-2021航天产品质量问题归零实施要求
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 殡葬服务人才需求调研报告
评论
0/150
提交评论