版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大数据分析与决策
姜昱汐
(大连交通大学经济管理学院经济学教研室)一、大数据的相关概念二、大数据分析三、大数据应用的典型案例四、大数据的可靠性五、大数据与贝叶斯方法报告内容2023/10/182数据管理技术发展历史数据管理技术历经人工管理、文件管理、数据库管理等时代,大数据技术的出现使该领域进入了一个新的发展阶段-3-194619511956196119701974197919912001200320082011第一台计算机ENIAC面世磁带+卡片人工管理磁盘被发明,进入文件管理时代网络型SQLE-RGE公司发明第一个网络模型数据库,但仅限于GE自己的主机1960年代,IT系统规模和复杂度变大,数据与应用分离的需求开始产生,数据库技术开始萌芽并蓬勃发展,并在1990年后逐步统一到以关系型数据库为主导IBME.F.Dodd提出关系模型SQL语言被发明关系型数据库ORACLE发布第一个商用SQL关系数据库,后续快速发展数据仓库数据仓库开始涌现,关系数据库开始全面普及且平台无关,进入成熟期2001年后,互联网迅速发展,数据量成倍递增,量变引起质变,开始对数据管理技术提出全新的要求1946年,电脑诞生,数据与应用紧密捆绑在文件中,彼此不分Hadoop成为Apache顶级项目,重点支持海量数据分布式管理和分布式计算GFS谷歌发表论文介绍分布式计算大数据发展背景全球信息化发展已步入大数据时代150亿个设备连接到互联网全球每秒钟发送290万封电子邮件每天有2.88万小时视频上传到YoutubeFacebook每日评论达32亿条,每天上传照片近3亿张,每月处理数据总量约130万TB2011年全球产生数据量1.8ZB,预计2020年将增长到35ZB大数据正迅速成为最值得关注的IT领域之一2011年5月,EMCWorld2011大会主题“云计算相遇大数据”,EMC除了一直倡导的云计算外,还抛出"大数据"(BigData)概念2011年6月底,IBM、麦肯锡等众多国外机构发布"大数据"相关研究报告,予以积极跟进2011年10月,Gartner认为2012年十大战略技术将包括"大数据"2011年11月底,IDC(互联网数据中心)
将"大数据"放入2012年信息通信产业十大预测之一-4-IDC全球数据量预测(1ZB
=1百万PB=10亿TB)Google网站Bigdata关键词搜索及新闻引用量什么是大数据123大数据的定义理解大数据的“4V”特征大数据的产生、增长2023/10/185“大数据”是如何产生的?21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学和基因学,创造出了“大数据”这个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域中。2023/10/186大数据时代的爆炸增长想驾驭这庞大的数据,我们必须了解大数据的特征。地球上至今总共的数据量:在2006年,个人用户才刚刚迈进TB时代,全球一共新产生了约180EB的数据;在2011年,这个数字达到了1.8ZB。而有市场研究机构预测:到2020年,整个世界的数据总量将会增长44倍,达到35.2ZB(1ZB=10亿TB)!1GB
=2^30字节1TB=2^40字节1PB
=2^50字节1EB
=2^60字节1ZB=2^70字节2023/10/187大数据的4V特征“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。VolumeVelocityValueVariety2023/10/188数据体量巨大(Volume):百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证明,到目前为止,人类生产的所有印刷材料的数据仅为200PB(不能在单个计算机上集中存储,一般需要用到分布式/云计算模式等)。数据类型多样化:现在的数据不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多种类型的数据,个性化、非结构化数据占据较大比例。大数据的4V特征处理速度快数据处理遵循“1秒定律”,可从各种类型的数据中快速获取高价值的信息价值密度低:以视频为例,几小时的视频,在不间断的监控过程中,有用的数据可能仅仅几秒。单个数据可能价值不大,但是数据整体还是有高价值的(比如一个班级大家发的微博可能没有特别大的意义,但是全国高校大学生发的微博就可以反映当代大学生思想理念)2023/10/189大数据的构成大数据=海量数据+复杂类型的数据海量交易数据:企业内部的经营交易信息主要包括联机交易数据和联机分析数据,是结构化的、通过关系数据库进行管理和访问的静态、历史数据。通过这些数据,我们能了解过去发生了什么。大数据包括:交易数据和交互数据集在内的所有数据集海量交互数据:源于Facebook、Twitter、微博、微信及其他来源的社交媒体数据构成。它包括了呼叫详细记录、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web文本和点击流数据、科学信息、电子邮件等等。可以告诉我们未来会发生什么。海量数据处理:大数据的涌现已经催生出了设计用于数据密集型处理的架构。例如具有开放源码、在商品硬件群中运行的ApacheHadoop。2023/10/18102023/10/1811大数据的市场潜力利用GPS数据了解交通状况2012年3月29日奥巴马政府公布了”大数据研发计划”。该计划的目标是改进现有人们从海量和复杂的数据中获取知识的能力,从而加速美国在科学与工程领域发明的步伐,增强国家安全,转变现有的教学和学习方式。“大数据战略”上升为美国最高国策对数据占有和控制,做为在陆权、海权、空权之外的另一种国家核心能力。大数据的浪潮大数据与乔布斯的癌症治疗沃尔玛的啤酒与纸尿布沃尔玛蛋挞与飓风用品的关系谷歌流感预测中国大数据市场分析1312011年-2016年中国大数据市场规模22012年各行业大数据市场规模计世资讯预测,2012年政府、互联网、电信、金融的大数据市场规模较大,四个行业将占据一半市场份额。由于各个行业都存在大数据应用需求,潜在市场空间非常可观。计世资讯认为,2011年是中国大数据市场元年,一些大数据产品已经推出,部分行业也有大数据应用案例的产生。2012年-2016年,将迎来大数据市场的飞速发展。计世资讯预测,2012年中国大数据市场规模将达到4.7亿元,2013年大数据市场将迎来增速为138.3%的飞跃,到2016年,整个市场规模逼近百亿。大数据的商业价值行业数据处理方式价值银行/金融贷款、保险、发卡等多业务数据集成分析,市场评估新产品风险评估股票等投资组合趋势分析增加市场份额提升客户忠诚度提高整体收入降低金融风险医疗共享电子病历及医疗记录,帮助快速诊断穿戴式设备远程医疗改善诊疗质量加快诊疗速度互联网在线广告投放商品评分、排名社交网络自动匹配搜索结果优化提升网络用户忠诚度改善社交网络体验向目标用户提供有针对性的商品与服务政府/公共事业智能城市信息网络集成天气、地理、水电煤气等公共数据收集、研究公共安全信息集中处理、智能分析更好地对外提供公共服务舆情分析准确预判安全威胁媒体/娱乐收视率统计热点信息统计、分析创造更多联合、交叉销售商机准确评估广告效用零售基于用户位置信息的准确促销社交网络购买行为分析促进客户购买热情顺应客户购买行为习惯一、大数据的相关概念二、大数据分析三、大数据应用的典型案例三、大数据的可靠性四、大数据与贝叶斯方法报告内容2023/10/1815分析技术:数据处理:自然语言处理技术统计和分析:A/Btest;topN排行榜;地域占比;文本情感分析数据挖掘:关联规则分析;分类;聚类模型预测:预测模型;机器学习;建模仿真大数据技术:数据采集:ETL工具数据存取:关系数据库;NoSQL;SQL等基础架构支持:云存储;分布式文件系统等计算结果展现:云计算;标签云;关系图等相关技术存储结构化数据海量数据的查询、统计、更新等操作效率低非结构化数据图片、视频、word、pdf、ppt等文件存储不利于检索、查询和存储半结构化数据转换为结构化存储按照非结构化存储解决方案:Hadoop(MapReduce技术)流计算(twitter的storm和yahoo!的S4)2023/10/1816二、大数据分析二、大数据分析
AnalyticVisualizations(可视化分析)
DataMiningAlgorithms(数据挖掘算法)
PredictiveAnalyticCapabilities(预测性分析能力)
SemanticEngines(语义引擎)
DataQualityandMasterDataManagement(数据质量和数据管理)
二、大数据分析-可视化分析
AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。二、大数据分析-数据挖掘算法
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
二、大数据分析-预测性分析能力
PredictiveAnalyticCapabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。二、大数据分析-语义引擎
SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。二、大数据分析-数据质量和数据管理
DataQualityandMasterDataManagement(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。一、大数据的相关概念二、大数据分析三、大数据应用的典型案例三、大数据的可靠性四、大数据与贝叶斯方法报告内容2023/10/1823三、大数据应用的典型案例-流感预测2023/10/1824全球每年约10%~15%的人群会患上流感,受感染人群约5000万人,死亡人数约50万。这可不是个小数字。如果我们能够尽早提前预测到流感即将爆发,无疑将使全球公众都将受益:政府和医疗机构提前拿出应对措施,就能挽救大量生命。2008年,谷歌推出了其著名的流感趋势网站(/flutrends)。该网站假定的前提是:如果用户患上了流感,则他们会搜索更多同流感相关的信息。如此一来,如果对任何一个国家或地区有关流感的搜索量进行统计,就能较好推断出某个国家或地区是否正爆发流感。2009年,谷歌在甲型H1N1流感爆发之前,用“谷歌流感趋势”(GFT)模型成功预测了流感在美国境内的传播。谷歌的相应数据,同美国疾病控制与预防中心(CDC)等政府机构所统计的数据非常接近(97%)。在某些情况下,谷歌甚至能够比CDC提前一周预测出哪些地区将爆发流感。2023/10/1825全球每星期会有数以百万计的用户在网上搜索健康信息。正如您所预料的那样,在流感季节,与流感有关的搜索会明显增多;到了过敏季节,与过敏有关的搜索会显著上升;而到了夏季,与晒伤有关的搜索又会大幅增加。某些搜索字词非常有助于了解流感疫情。Google流感趋势会根据汇总的Google搜索数据,近乎实时地对全球当前的流感疫情进行估测。搜索流感相关主题的人数与实际患有流感症状的人数之间存在着密切的关系。当然,并非每个搜索“流感”的人都真的患有流感,但将与流感有关的搜索查询汇总到一起时,便可以找到一种模式。将统计的查询数量与传统流感监测系统的数据进行了对比,结果发现许多搜索查询在流感季节确实会明显增多。通过对这些搜索查询的出现次数进行统计,便可以估测出世界上不同国家和地区的流感传播情况。Detectinginfluenzaepidemicsusingsearchenginequerydata,Nature
457,1012-1014(19February2009)三、大数据应用的典型案例-流感预测2023/10/1826卡耐基梅隆大学的JiweiLi和康乃尔大学的ClaireCardie,成功利用Twitter预测了早期流感爆发。他们的方式与Google类似。首先,从Twitter数据流中过滤包含与“流感”相关,并带有位置标签的tweet;然后,在地图上标注这些tweet的位置分布,以及随时间产生的变化。同时,还制作了流感的动态变化模型。新模型中,流感包括4个阶段:无传染阶段、爆发阶段、稳定阶段以及衰退阶段。此外,采用了全新的算法,试图尽可能快得发现不同时期的转换节点。实际上,Li和Cardie在2008年6月至2010年6月间,已经利用100万美国人的360万条tweet,验证了该方法的有效性。为了检验他们的预测是否成真,Li和Cardie将他们的分析与CDC进行对比。他们说,“我们确信,流感相关tweet与CDC提供的流感疾病案例数目,呈显著相关。”三、大数据应用的典型案例-流感预测2023/10/1827日本国内有一个网站,你只要打开这个网站用自己的Twitter账号登录,就可以在短时间内通过数万条Twitter找出可能感冒的人,并通过过去的感冒情况和今日的感冒情况进行分析(以及统计目前发烧以及嗓子痛的患者数量),另外该程序还会结合气温和湿度的变化来预测将来感冒的流行情况,并制作一个“易感冒日历”。目前,此类服务正在日本陆续展开。通过这个服务器的分析,大家就能够知道在自己身边到底有多少人有感冒的症状,并提前做好预防准备。日本国立感染症研究所将会把全国约
5000个医疗诊所的流感患者进行统计并发布数据。经过对比,研究所得出的实际统计数字和网站上预测的结果基本是一致的,那么为什么大数据的结果会很准呢?首先是因为通过网络信息分析的技术有所进步,已经可以通过各种各样的留言自动搜索到相关的数据,并自动分类。就像Google现在所使用的技术,就是利用服务器分析与流感关系十分密切的十几个单词进行统计。另一个就是大数据所特有的功能。在流感最严重的时候,每天会有成千上万条Tweets发布,即便有一些误差,但通过数据分析也能分析出数据的精准度。以往,公共机构在发布流感情报的时候至少要延迟一周,在有些偏远地区的立杆信息也并不确切,而现在,通过网络能够有效弥补这些缺憾。三、大数据应用的典型案例-流感预测2023/10/1828亚马逊“预测式发货”的新专利,可以通过对用户数据的分析,在他们还没有下单前,提前发出包裹。这项技术可以缩短发货时间,从而降低消费者前往实体店的冲动。(因为在下单到收获之间的时间延迟可能会降低人们的购物意愿,导致他们放弃网上购物)亚马逊根据之前的订单和其他因素,预测用户的购物习惯,从而在他们实际下单前就将包裹发出。根据该专利文件,虽然包裹会提前从亚马逊发出,但在用户正式下单前,这些包裹会暂存在快递公司的转运中心或者卡车里。亚马逊为了决定要运送那些货物,可能会参考以前的订单、商品搜索记录、愿望清单、购物车、甚至包括用户的鼠标在某件商品上停留的时间。三、大数据应用的典型案例-亚马逊“预测式发货”2023/10/18292012年11月奥巴马大选连任成功的胜利果实也被归功于大数据,因为他的竞选团队对选民的行为、支持偏向进行了数据搜集,并进行了大规模与深入的数据挖掘。在这次大选中,奥巴马竞选阵营的高级助理们决定将参考得到的数据分析结果来制定下一步的竞选方案,从而获得选民的支持。三、大数据应用的典型案例-奥巴马选举三、大数据应用的典型案例-“老鼠仓”2023/10/1830早在2009年,上交所曾经利用“大数据”设置“捕鼠器”的设想,设定一定的指标预警,当相关指标达到某个预警点时,监控系统会自动报警。深交所“大数据”监控系统,设置200多个指标用于监控估计,一旦出现股价偏离大盘的走势,将利用大数据查探异动背后的机构或投资人。马乐案,监管系统发现有三个账户的交易特点和当时的博时精选基金高度重合,从交易记录上可以看到,持股时间最长不过一两个月,大多是三四天、四五天。三、大数据应用的典型案例-阿里“水文模型”2023/10/1831阿里“水文模型”是按照小微企业类型、级别等分别统计一个阿里系客户的相关“水文数据”库。如过往每到一个时点,该店铺销售会进入旺季,销售额就会增长,同时没到这个时段,该客户对外投放的额度就会上升,结合这些水文数据,系统可以判断出该店铺的融资需求;结合该店铺以往资金支出数据及同类店铺资金支用数据,可以判断出该店铺的资金需求额度。三、大数据应用的典型案例-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年墙纸销售交易协议
- 2024年不动产权益转让确认协议
- 2024建筑转让协议格式
- 2024年度工程劳务分包招标协议细则
- 定制型防盗窗加工与安装服务协议
- 2024桶装矿泉水销售协议样本
- 2024年挡土墙工程承包协议格式
- 2024物流承运协议规范文本
- 冀教版八年级上册生物全册教案
- 篮球课外训练教案
- 校园突发事件及危机应对
- 《必修上第六单元》教案【高中语文必修上册】
- 国开电大《农村社会学》形成考核1答案
- 混凝土浇筑及振捣措施方案
- 立体构成的基本要素及形式美法则备课讲稿课件
- 广东省房屋建筑工程概算定额说明及计算规则样本
- 汽车文化知识考试参考题库400题(含答案)
- 《水循环》-完整版课件
- 抗高血压药物基因检测课件
- 西游记 品味经典名著导读PPT
- 金坛区苏科版四年级心理健康教育第1课《我的兴趣爱好》课件(定稿)
评论
0/150
提交评论