2024届河南省新乡市卫辉市八上数学期末质量检测试题含解析_第1页
2024届河南省新乡市卫辉市八上数学期末质量检测试题含解析_第2页
2024届河南省新乡市卫辉市八上数学期末质量检测试题含解析_第3页
2024届河南省新乡市卫辉市八上数学期末质量检测试题含解析_第4页
2024届河南省新乡市卫辉市八上数学期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省新乡市卫辉市八上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°2.如图,若BC=EC,∠BCE=∠ACD,则添加不能使△ABC≌△DEC的条件是()A. B. C. D.3.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.4.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°5.如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k-2)x+k的位置可能是()A. B. C. D.6.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断7.把分解因式正确的是()A. B. C. D.8.已知,,那么的值是()A.11 B.16 C.60 D.1509.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.1010.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2二、填空题(每小题3分,共24分)11.一次函数y=kx-3的图象经过点(-1,3),则k=______.12.将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.13.如图,在与中,,,,若,则的度数为________.14.方程的根是______.15.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为.连接,并求的长__________.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.17.如图,AB=AD,∠1=∠2,如果增加一个条件_____,那么△ABC≌△ADE.18.如图,在中,是的垂直平分线.若,的周长为13,则的周长为______.三、解答题(共66分)19.(10分)如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:(1)求的值和一次函数的表达式.(2)求的面积;(3)当为何值时,?请直接写出答案.20.(6分)如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,(1)求证:△ABQ≌△CAP;(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?21.(6分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y)+(2x-3y)2.(2)因式分解:(a+b)(a+b-4)+4;22.(8分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.23.(8分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,试猜想CE、BF的关系,并说明理由.24.(8分)如图,△ABC中,AB=AC,点E、F在边BC上,BF=CE,求证:AE=AF.25.(10分)如图,等腰△ABC,点D、E、F分别在BC、AB、AC上,且∠BAC=∠ADE=∠ADF=60°.(1)在图中找出与∠DAC相等的角,并加以证明;(2)若AB=6,BE=m,求:AF(用含m的式子表示).26.(10分)甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.求甲、乙仓库原来各存粮多少吨?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】试题分析:在Rt△ABC和Rt△ADC中,∵BC=DC,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠ACD,∵∠1+∠ACD=90°,∴∠2+∠1=90°,∵∠1=40°,∴∠2=50°,故选B.考点:全等三角形的判定与性质.2、A【分析】由∠BCE=∠ACD可得∠ACB=∠DCE,结合BC=EC根据三角形全等的条件逐一进行分析判断即可.【题目详解】∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,又∵BC=EC,∴添加AB=DE时,构成SSA,不能使△ABC≌△DEC,故A选项符合题意;添加∠B=∠E,根据ASA可以证明△ABC≌△DEC,故B选项不符合题意;添加AC=DC,根据SAS可以证明△ABC≌△DEC,故C选项不符合题意;添加∠A=∠D,根据AAS可以证明△ABC≌△DEC,故D选项不符合题意,故选A.【题目点拨】本题考查了三角形全等的判定,准确识图,熟练掌握全等三角形的判定方法是解题的关键.3、A【解题分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.4、C【解题分析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.5、C【分析】根据比例系数的正负分三种情况:,,,然后再结合交点横坐标的正负即可作出判断.【题目详解】当时,解得;当时,正比例函数图象过一、三象限,而一次函数图象过一、二、三象限,两函数交点的横坐标大于0,没有选项满足此条件;当时,正比例函数图象过一、三象限,而一次函数图象过一、二、四象限;两函数交点的横坐标大于0,C选项满足条件;当时,正比例函数图象过二,四象限,而一次函数图象过二、三、四象限;两函数交点的横坐标小于0,没有选项满足此条件;故选:C.【题目点拨】本题主要考查正比例函数与一次函数的图象,掌握k对正比例函数和一次函数图象的影响是解题的关键.6、B【分析】根据判别式即可求出答案.【题目详解】解:由题意可知:,

∴,

故选:B.【题目点拨】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.7、D【分析】先提取公因式mn,再对余下的多项式利用完全平方公式继续分解.【题目详解】==.故选:D.【题目点拨】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.8、D【分析】由幂的乘方、同底数幂相乘的运算法则进行计算,即可得到答案.【题目详解】解:∵,,∴;故选:D.【题目点拨】本题考查了幂的乘方、同底数幂相乘,解题的关键是掌握运算法则进行计算.9、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【题目详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【题目点拨】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.10、B【分析】根据二次根式有意义的条件可得,再解不等式即可.【题目详解】解:由题意得:,解得:,

故选:B.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.二、填空题(每小题3分,共24分)11、-6【题目详解】解:把点代入得,解得故答案为:12、y=17x+1【分析】由图可知,将x张这样的白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽,把相关数据代入化简即可得到所求关系式.【题目详解】解:由题意可得:y=20x-1(x-1)=17x+1,即:y与x间的函数关系式为:y=17x+1.故答案为:y=17x+1.【题目点拨】观察图形,结合题意得到:“白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽”是解答本题的关键.13、40°【分析】先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出的度数.【题目详解】解:在Rt△ABC与Rt△DEF中,

∵∠B=∠E=90°,AC=DF,AB=DE,

∴Rt△ABC≌Rt△DEF(HL)

∴∠D=∠A=50°,

∴∠DFE=90°-∠D=90°-50°=40°.

故答案为:40°.【题目点拨】此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.14、,【分析】先移项得到x(x+1)-1(x+1)=0,再提公因式得到(x+1)(x-1)=0,原方程化为x+1=0或x-1=0,然后解一次方程即可.【题目详解】解:∵x(x+1)-1(x+1)=0,

∴(x+1)(x-1)=0,

∴x+1=0或x-1=0,

∴x1=-1,x1=1.

故答案为:x1=-1,x1=1.【题目点拨】本题考查了解一元二次方程—因式分解法:先把方程,右边化为0,再把方程左边因式分解,这样把原方程转化为两个一元一次方程,然后解一次方程即可得到原方程的解.15、【分析】设,则,由翻折的性质可知,在Rt△ENC中,由勾股定理列方程求解即可求出DN,连接AN,由翻折的性质可知FN=AN,然后在Rt△ADN中由勾股定理求得AN的长即可.【题目详解】解:如图所示,连接AN,设,则,由翻折的性质可知:,

在中,有,,

解得:,即cm.

在Rt三角形ADN中,,由翻折的性质可知.【题目点拨】本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x的方程是解题的关键.16、1【分析】由A点坐标可得OA=2,∠AOP=15°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【题目详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=15°,OA=2,当∠AOP为顶角时,OA=OP=2,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=15°,∴∠OAP=90°,∴OP=OA=1,∴P的坐标是(1,0)或(2,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=15°,∵AP=OP,∴∠OAP=∠AOP=15°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).综上所述:P的坐标是(2,0)或(1,0)或(2,0)或(﹣2,0).故答案为1.【题目点拨】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.17、AC=AE【解题分析】由∠1=∠2,则∠BAC=∠DAE,加上AB=AD,若根据“SAS”判定△ABC≌△ADE,则添加AC=AE.【题目详解】∵∠1=∠2,

∴∠1+∠DAC=∠2+∠DAC,

∴∠BAC=∠DAE,

而AB=AD,

∴当AC=AE时,△ABC≌△ADE.

故答案为:AC=AE.【题目点拨】本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS..18、【分析】由线段的垂直平分线的性质可得,从而可得答案.【题目详解】解:是的垂直平分线.,的周长故答案为:【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.三、解答题(共66分)19、(1);(2);(3).【分析】(1)易求出点A的坐标,即可用待定系数法求解;

(2)由解析式求得C的坐标,即可求出△BOC的面积;

(3)根据图象即可得到结论.【题目详解】(1)∵一次函数y1=kx+b的图象与正比例函数的图象交于点A(m,3),

∴,

∴m=4,

∴A(4,3);

把A(4,3),B(0,1)代入得,,解得,∴一次函数的表达式为;(2)当时,,

∴C(-2,0),∴,∵B(0,1),∴,

∴△BOC的面积;(3)由图象知,当-2<x<0时,则、异号,∴当-2<x<0时,.【题目点拨】本题考查了两条直线相交或平行问题,待定系数法求函数的解析式,三角形面积的计算,正确的识别图象是解题的关键.20、(1)证明见解析;(2)∠CMQ的大小不变且为60度;(3)t=2.【分析】(1)根据等边三角形的性质、三角形全等的判定定理证明;(2)根据全等三角形的性质得到∠BAQ=∠ACP,根据三角形的外角的性质解答;(3)分三种情况分别讨论即可求解.【题目详解】(1)根据路程=速度×时间可得:AP=BQ∵△ABC是等边三角形∴∠PAC=∠B=60°,AB=AC∴△ABQ≌△CAP(SAS)(2)∵△ABQ≌△CAP∴∠BAQ=∠ACP∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°因此,∠CMQ的大小不变且为60度(3)当AP=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当PQ=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当AP=PQ时,如图,当AQ⊥BC时,AP=BP=PQ,故t=2÷1=2时,△APQ为等腰三角形;综上,当t=2时,△APQ为等腰三角形,此时AP=PQ.【题目点拨】本题考查的是全等三角形的判定、直径三角形的性质,掌握等边三角形的性质、灵活运用分情况讨论思想是解题的关键.21、(1)(1+2x-3y)2;(2)(a+b-2)2.【解题分析】(1)将(2x-3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解,再代入即可将原式因式分解.【题目详解】解:(1)原式=(1+2x-3y)2.(2)令A=a+b,则原式变为A(A-4)+4=A2-4A+4=(A-2)2,故:(a+b)(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y)2;(2)(a+b-2)2.【题目点拨】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.22、(1)证明见解析;(2).【分析】(1)先求出,根据30°所对的直角边是斜边的一半,可得,从而得出,然后根据等边对等角可得,然后利用外角的性质和等角对等边可证出,再利用等角对等边可得,从而得出,最后利用ASA即可证出;(2)先根据已知条件即可求出BD和CD,从而求出DF,再根据全等三角形的性质即可求出FC和FG,从而求出CG,最后根据30°所对的直角边是斜边的一半即可求出.【题目详解】(1)证明:连接,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,∴,即,∴∵,∴,∴∵,∴,∵,∴,在和中∴;解:(2)∵,∴,∵,∴,∵,∴,∴,∴在中,,,∴.【题目点拨】此题考查的是直角三角形的性质、等腰三角形的判定及性质和全等三角形的判定及性质,掌握30°所对的直角边是斜边的一半、等边对等角和等角对等边和全等三角形的判定及性质是解决此题的关键.23、EC=BF,EC⊥BF,理由见解析【解题分析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【题目详解】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,∵,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.【题目点拨】考核知识点:全等三角形的判定(SAS).掌握判定定理是关键.24、见解析【分析】由等腰三角形的性质得出∠B=∠C,证明△ACE≌△ABF(SAS),即可得出结论.【题目详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论