版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省福州市台江区福州华伦中学八年级数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.AD的长是()A.5 B.6 C.7 D.82.点关于轴的对称点的坐标是A. B. C. D.3.如图,已知,.若要得到,则下列条件中不符合要求的是()A. B. C. D.4.如图,在中,,是的角平分线,点是上的一点,则下列结论错误的是()A. B. C. D.5.由下列条件不能判定为直角三角形的是()A. B.C. D.6.下列真命题中,逆命题是假命题的是()A.等腰三角形的两底角相等 B.全等三角形的三组对应边分别相等C.若a=b,则a2=b2 D.若a2>b2,则|a|>|b|7.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.8.如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60° B.55° C.50° D.45°9.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或2710.要使分式有意义,x的取值范围满足()A.x≠2 B.x≠1 C.x≠1且x≠2 D.x≠1或x≠2二、填空题(每小题3分,共24分)11.分解因式:a3-a=12.计算的结果等于_______.13.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为_____14.若不等式组有解,则的取值范围是____.15.一组数据5,,2,,,2,若每个数据都是这组数据的众数,则这组数据的极差是________.16.如图,小明把一副含45°角和30°角的直角三角板如图摆放,则∠1=____°.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为__________.18.如图,在等腰直角△ABC中,AB=4,点D是边AC上一点,且AD=1,点E是AB边上一点,连接DE,以线段DE为直角边作等腰直角△DEF(D、E、F三点依次呈逆时针方向),当点F恰好落在BC边上时,则AE的长是_____.三、解答题(共66分)19.(10分)作业中有一题:化简,求值:,其中.小红解答如下:(第一步)(第二步)(第三步)当时,(第四步)(第五步)(第六步)(1)老师说小红计算错误,请指出第几步开始发生错误,并写出正确的过程;(2)如果m从-1、0、1、2中任取一个数代入并求值,你会选择____________,代数式的值是______________.20.(6分)已知,,求的值.21.(6分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.22.(8分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.23.(8分)补充下列证明,并在括号内填上推理依据.已知:如图,在中,平分交于点,交于点,且,求证:.证明:,().,.(),________________.平分,(),,,________________,.().24.(8分)如图,已知△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°,点D在线段AC上.(1)求∠DCE的度数;(2)当点D在线段AC上运动时(D不与A重合),请写出一个反映DA,DC,DB之间关系的等式,并加以证明.25.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.26.(10分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)
参考答案一、选择题(每小题3分,共30分)1、C【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.则易求AD的长.【题目详解】∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS);∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=2.故选:C.【题目点拨】本题主要考查全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.2、A【分析】再根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【题目详解】解:∵∴M点关于x轴的对称点的坐标为,故选A.【题目点拨】此题考查关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律3、C【分析】由已知,,故只需添加一组角相等或者BC=EF即可.【题目详解】解:A:添加,则可用AAS证明;B:添加,则可用ASA证明;C:添加,不能判定全等;D:添加,则,即BC=EF,满足SAS,可证明.故选C.【题目点拨】本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS不能判定全等.4、D【分析】根据等腰三角形“三线合一”的性质及全等三角形的判定即可确定正确的结论.【题目详解】∵AB=AC,AE是△ABC的角平分线,∴AE垂直平分BC,∴故A正确.∵AE垂直平分BC,∴BE=CE,∠BED=∠CED.∵DE=DE,∴△BED≌△CED,故B正确;∵AE是△ABC的角平分线,∴∠BAD=∠CAD.∵AB=AC,AD=AD,∴△BAD≌△CAD,故C正确;∵点D为AE上的任一点,∴∠ABD=∠DBE不正确.故选:D.【题目点拨】本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.5、C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【题目详解】A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;C、∵()2+()2≠()2,故不能判定是直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确.故选C.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、C【解题分析】题设成立,结论也成立的命题是真命题.A.根据等腰三角形判定可判断;B.由全等三角形判定可判断;C.举反例即可;D.根据非负数性质,用列举法可证.【题目详解】由“有两个角相等的三角形是等腰三角形”,可判断A是真命题;因为“三边对应相等的两个三角形全等”,所以B是真命题;如,但,所以C是假命题;根据不等式性质,若|a|>|b|,则a2>b2.所以是真命题.故正确选项为C.【题目点拨】此题考核知识点:命题.要判断命题是真命题,必须题设成立,结论也成立.相关的性质必须熟悉.举反例也是一种常见方法.7、D【分析】根据轴对称图形的概念判断即可求解.【题目详解】解:A、不是轴对称图形.故选项错误,不合题意;B、不是轴对称图形.故选项错误,不合题意;C、不是轴对称图形.故选项错误,不合题意;D、是轴对称图形.故选项正确,符合题意.故选:D.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.8、C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【题目详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;
在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=∠CEO=50°.故选C.【题目点拨】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9、C【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【题目详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.【题目点拨】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.10、B【分析】根据分式有意义的条件可得x−1≠0,再解即可.【题目详解】解:由题意得:x﹣1≠0,解得:x≠1,故选:B.【题目点拨】本题考查了分式有意义的条件.关键是掌握分式有意义的条件是分母不等于零.二、填空题(每小题3分,共24分)11、【解题分析】a3-a=a(a2-1)=12、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【题目详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算13、8【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即可求小正方形的边长.【题目详解】如图,∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2−PQ2=289−225=64,∴QR=8,即字母A所代表的正方形的边长为8.【题目点拨】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.14、【分析】根据题意,利用不等式组取解集的方法即可得到m的范围.【题目详解】解:由题知不等式为,∵不等式有解,∴,∴,故答案为.【题目点拨】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.15、1【分析】根据题意可得x的值,然后再利用最大数减最小数即可.【题目详解】由题意得:,
极差为:,
故答案为:1.【题目点拨】本题主要考查了众数和极差,关键是掌握极差是指一组数据中最大数据与最小数据的差.16、1【分析】根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【题目详解】解:如图所示,∵∠BAC=30°,∠ACB=90°,∴∠1=∠ACB+∠BAC=90°+30°=1°,故答案为:1.【题目点拨】本题考查的是三角形的内角和定理以及三角形外角的性质的运用,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.17、【分析】根据题意以及众数和中位数的定义可得出这5个数字,然后求其平均数即可.【题目详解】解:由题意得:这五个数字为:1,2,3,8,8,
则这5个数的平均数为:(1+2+3+8+8)÷5=.
故答案为:.【题目点拨】本题考查了众数和中位数的知识,难度一般,解答本题的关键是根据题意分析出这五个数字.18、或1【分析】分两种情况:①当∠DEF=90°时,证明△CDF∽△BFE,得出,求出BF=,得出CF=BC﹣BF=,得出BE=,即可得出答案;②当∠EDF=90°时,同①得△CDF∽△BFE,得出,求出BF=CD=3,得出CF=BC﹣BF=,得出BE=CF=1,即可得出答案.【题目详解】解:分两种情况:①当∠DEF=90°时,如图1所示:∵△ABC和△DEF是等腰直角三角形,∴AC=AB=4,∠B=∠C=∠EFD=∠EDF=45°,BC=AB=4,DF=EF,∵AD=1,∴CD=AC﹣AD=3,∵∠EFC=∠EFD+∠CFD=∠B+∠BEF,∴∠CFD=∠BEF,∴△CDF∽△BFE,∴,∴BF=,∴CF=BC﹣BF=4﹣=,∴BE==,∴AE=AB﹣BE=;②当∠EDF=90°时,如图1所示:同①得:△CDF∽△BFE,∴,∴BF=CD=3,∴CF=BC﹣BF=4﹣3=,∴BE=CF=1,∴AE=AB﹣BE=1;综上所述,AE的长是或1;故答案为:或1.【题目点拨】本题考查了等腰直角三角形的性质、勾股定理、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质和勾股定理,证明三角形相似是解题的关键.三、解答题(共66分)19、(1)第一步,正确的过程见解析;(2)2,【分析】(1)第一步开始发生错误,括号内通分后计算同分母的减法时,没有变号;根据分式的混合运算顺序和运算法则化简可得;(2)m取-1、0、1时分式没有意义,只能取2,代入求值即可.【题目详解】(1)第一步开始发生错误,括号内通分后计算同分母的减法时,没有变号;正确的过程是:;(2)∵m取-1、0、1时,分母为0,分式没有意义,∴m只能取2,把=2代入得:原式,故答案为:2,.【题目点拨】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.在选取代入的值时关键是注意分式有意义的条件.20、72【分析】根据同底数幂相乘的逆运算,以及幂的乘方运算,即可得到答案.【题目详解】解:∵,,∴;【题目点拨】本题考查了幂的乘方,以及同底数幂相乘的逆运算,解题的关键是掌握运算法则进行计算.21、20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC进行计算即可.【题目详解】解:在△ABC中,∵∠B=20°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣20°﹣60°=100°∵AE是的角平分线,∴∠EAC=∠BAC=×100°=50°,∵AD是△ABC的高,∴∠ADC=90°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,∴∠DAE=∠EAC﹣∠DAC=50°﹣30°=20°.【题目点拨】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.22、(1);=;;(2).【解题分析】(1)根据不等式和方程移项可得结论;(2)同理,利用作差法可比较大小.【题目详解】(1)(1)①若a-b>0,则a>b;②若a-b=0,则a=b;③若a-b<0,则a<b;(2).因为,所以,即.【题目点拨】本题考查了实数大小的比较,根据所给的材料,运用类比的方法解决问题.23、三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【分析】由已知条件,先求出∠ABC的度数,因为DB平分∠ABC,得∠CBD=∠BDE,即可得出结论.【题目详解】证明:,(三角形内角和等于).,.(等量代换),,平分,(角平分线的定义),,,,.(内错角相等,两直线平行).故答案为三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【题目点拨】本题主要考查平行线判定和性质的知识,熟知平行线的判定定理是解答此题的关键.24、(1)见解析;(1)1BD1=DA1+DC1,见解析【分析】(1)只要证明△ABD≌△CBE(SAS),推出∠A=∠ACB=∠BCE=45°即可解决问题;(1)存在,1BD1=DA1+DC1;在Rt△DCE中,利用勾股定理证明即可.【题目详解】(1)∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∠A=∠ACB=45°,同理可得:DB=BE,∠DBE=90°,∠BDE=∠BED=45°,∴∠ABD=∠CBE,在△ABD与△CBE中,AB=BC,∠ABD=∠CBE,DB=BE,∴△ABD≌△CBE(SAS),∴∠A=∠BCE=45°∴∠DCE=∠ACB+∠BCE=90°.(1)1BD1=DA1+DC1.证明如下:∵△BDE是等腰直角三角形,∴DE=BD,∴DE1=1BD1,∵△ABD≌△CBE,∴AD=CE,∴DE1=DC1+CE1=AD1+CD1,故1BD1=AD1+CD1.【题目点拨】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25、(1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.【分析】(1)由“SAS”可证△ACD≌△ABE,可得BE=CD;(2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.【题目详解】解:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,且AB=AC,AD=AE,∴△ACD≌△ABE(SAS)∴BE=CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- tea'stone茶饮品牌手册
- 高一体育 背越式跳高教案
- 2024六年级英语上册 Module 6 Unit 2 I've got a stamp from China第4课时教案 外研版(三起)
- 2024-2025学年高中生物 第6章 第1节 杂交育种与诱变育种教案 新人教版必修2
- 2023四年级数学上册 八 垂线与平行线《直线、射线和角》说课稿 苏教版
- 2024-2025版新教材高中语文 第四单元 第一节 记录家乡的人和物教案 新人教版必修上册
- 房地产金融与投资概论教学课件第十二章房地产投资风险
- 防水工程抵房合同(2篇)
- 人教版灯光课件
- 介绍袁隆平课件
- TIMAAMM 003-2023 蒙医病证诊断疗效标准
- 全国人工智能应用技术技能竞赛理论知识题库附答案
- 数控机床概述(完整版)
- 量子最优化算法在金融业的应用研究报告
- 移动公司客户服务培训教材
- 国际法-利比亚-马耳他大陆架划界案
- 2024年四川省达州水务集团有限公司招聘笔试参考题库含答案解析
- 著作权法概述课件
- 2023-2024学年人民版六年级下册劳动教学设计(第6课)学用洗衣机(教案)
- 人工智能在教育行业的远程学习应用
- 图形创意共生图形实训+讲授
评论
0/150
提交评论