版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市垦利区2024届八上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各点在函数图象上的是()A. B. C. D.2.下列各式的变形中,正确的是()A. B. C. D.3.如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64° B.42° C.32° D.26°4.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间5.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6C.2m+3 D.2m+66.如图,等边三角形中,,有一动点从点出发,以每秒一个单位长度的速度沿着折线运动至点,若点的运动时间记作秒,的面积记作,则与的函数关系应满足如下图象中的()A. B. C. D.7.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、F为AB上的一点,CF⊥AD于H,下列判断正确的有()A.AD是△ABE的角平分线 B.BE是△ABD边AD上的中线C.AH为△ABC的角平分线 D.CH为△ACD边AD上的高8.若,则的值为()A. B.-3 C. D.39.如图,在等边中,,过边上一点作于点,点为延长线上一点,且,连接交于点,则的长为().A.2 B. C.3 D.10.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:11.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,512.如图,等边△ABC中,BD⊥AC于D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.3cm B.4cm C.5cm D.6cm二、填空题(每题4分,共24分)13.已知关于x,y的方程组的解满足不等式2x+y>8,则m的取值范围是____.14.使函数有意义的自变量的取值范围是_______.15.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有_____(将所有正确答案的序号填写在横线上).16.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.17.计算:=_________.18.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC=________.三、解答题(共78分)19.(8分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).20.(8分)老师在黑板上写出三个算式:,,,王华接着又写了两个具有同样规律的算式:,,…(1)请你再写出一个(不同于上面算式)具有上述规律的算式;(2)用文字表述上述算式的规律;(3)证明这个规律的正确性.21.(8分)解方程或求值(1)解分式方程:(2)先化简,再求值,其中22.(10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?23.(10分)(1)分解因式:;(2)用简便方法计算:.24.(10分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.25.(12分)如图,已知中,,点D在边AB上,满足,(1)求证:;(2)若,且的面积为,试求边AB的长度.26.如图,在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】依据函数图像上点的坐标满足解析式可得答案.【题目详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【题目点拨】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.2、C【分析】根据分式的性质逐项进行判断即可得.【题目详解】A中的x不是分子、分母的因式,故A错误;B、分子、分母乘的数不同,故B错误;C、(a≠0),故C正确;D、分式的分子、分母同时减去同一个非0的a,分式的值改变,故D错误,故选C.【题目点拨】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.3、C【分析】根据直角三角形的性质可求∠B的度数,再根据等腰三角形的性质可求∠BCD的度数,从而可求出∠ACD的度数.【题目详解】解:∵在△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵BC=BD,∴∠BCD=(180°﹣64°)÷2=58°,∴∠ACD=90°﹣58°=32°.故选:C.【题目点拨】本题考查了等腰三角形的性质,三角形的内角和定理,关键是求出∠BCD的度数.4、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【题目详解】解:∵∴,,∴,即,∴的值在3和4之间.故选:C.【题目点拨】本题主要考查无理数的估算,掌握无理数的估算方法是解题的关键.5、C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【题目详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.6、A【分析】根据等边三角形的性质结合点的运动,当P运动到B,△APC的面积即为△ABC的面积,求出即可判定图象.【题目详解】作CD⊥AB交AB于点D,如图所示:由题意,得当点P从A运动到B时,运动了4秒,△APC面积逐渐增大,此时,即当时,,即可判定A选项正确,B、C、D选项均不符合题意;当点P从B运动到C,△APC面积逐渐缩小,与从A运动到B时相对称,故选:A.【题目点拨】此题主要考查根据动点问题确定函数图象,解题关键是找出等量关系.7、D【解题分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【题目详解】A.根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B.根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C.根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误;D.根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;故选D.【题目点拨】此题考查三角形的角平分线、中线和高,解题关键在于掌握其定义.8、D【分析】根据绝对值和算术平方根非负数性质进行化简即可.【题目详解】因为所以故选:D【题目点拨】考核知识点:二次根式.理解二次根式的意义,利用算术平方根非负数性质解决问题是关键点.9、C【分析】过点D作DG∥BC交AC于点,根据等边三角形的性质和全等三角形的性质解答即可.【题目详解】解:过点D作DG∥BC交AC于点G,
∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠A=60°,
∴∠A=∠ADG=∠AGD=60°,
∴△ADG是等边三角形,
∴AG=AD,DH⊥AC,∴AH=HG=AG,
∵AD=CE,
∴DG=CE,
在△DFG与△EFC中
∴△DFG≌△EFC(AAS),∴GF=FC=GC
∴HF=HG+GF=AG+GC=AC=3,故选C.【题目点拨】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.10、B【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【题目详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2:,所以设a=x,b=2x,c=x,则x2+(x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【题目点拨】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.11、D【分析】根据三角形的三边关系进行分析判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【题目详解】A选项中,因为3+4<8,所以A中的三条线段不能组成三角形;B选项中,因为5+6=11,所以B中的三条线段不能组成三角形;C选项中,因为5+6<12,所以C中的三条线段不能组成三角形;D选项中,因为3+4>5,所以D中的三条线段能组成三角形.故选D.【题目点拨】判断三条线段能否组成三角形,根据“三角形三边间的关系”,只需看较短两条线段的和是否大于最长线段即可,“是”即可组成三角形,“否”就不能组成三角形.12、C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【题目详解】解:如图,∵△ABC是等边三角形,
∴BA=BC,
∵BD⊥AC,
∴AD=DC=3.5cm,
作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,
∵AQ=2cm,AD=DC=3.5cm,
∴QD=DQ′=1.5(cm),
∴CQ′=BP=2(cm),
∴AP=AQ′=5(cm),
∵∠A=60°,
∴△APQ′是等边三角形,
∴PQ′=PA=5(cm),
∴PE+QE的最小值为5cm.
故选:C.【题目点拨】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.二、填空题(每题4分,共24分)13、m<﹣1.【分析】先解方程组,然后将x、y的值代入不等式解答.【题目详解】解:解方程组得x=2m﹣1,y=4﹣5m,将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得4m﹣2+4﹣5m>8,∴m<﹣1.故答案为:m<﹣1.【题目点拨】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.14、【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【题目详解】解:∵有意义∴6-x≥0∴故答案为:【题目点拨】本题考查了函数自变量的取值范围,二次根式有意义的条件,掌握二次根式,被开方数a≥0是解题的关键.15、①③④.【分析】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=∠ACD,根据外角的性质即可得到结论;
②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;
③由BG=GE,CH=EH,于是得到BG-CH=GE-EH=GH.即可得到结论;
④由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.【题目详解】①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=∠ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+∠BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所以不能得出全等的结论,故②错误;③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,同理CH=HE,∴BG−CH=GE−EH=GH,∴BG=CH+GH,故③正确;④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180−2z,∠ACB=180−2x,∵∠ABC+∠ACB+∠BAC=180,∴2y+180−2z+180−2x=180,∴x+z=y+90,∵z=y+∠AEB,∴x+y+∠AEB=y+90,∴x+∠AEB=90,即∠ACE+∠AEB=90,故④正确.故答案为①③④.【题目点拨】本题考查了平行线的性质,角平分线的定义,角平分线的性质和判定,三角形内角和定理,三角形的外角性质等多个知识点.判断出AE是△ABC的外角平分线是关键.16、1【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【题目详解】解:找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;∴(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),
∴第三项系数为1+2+3+…+7=1,
故答案为:1.【题目点拨】本题考查数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.17、【解题分析】=18、9【分析】根据勾股定理求出AB,再利用相似即可求解.【题目详解】∵AB=AC,∠BAC=120°∴∠C=30°,又∵AD⊥AC,AD=3∴∠DAC=90°,CD=6勾股定理得AC=AB=3,由图可知△ABD∽△BCA,∴BC=9【题目点拨】本题考查了勾股定理和相似三角形,属于简单题.证明相似是解题关键.三、解答题(共78分)19、(1)12x3y2;(2)a2+3ab.【分析】(1)根据分式的乘除法以及积的乘方的运算法则计算即可.
(2)应用完全平方公式,以及单项式乘多项式的方法计算即可.【题目详解】(1)•(6x2y)2;=•(36x4y2)=12x3y2;(2)(a+b)2+b(a﹣b)=a2+2ab+b2+ab﹣b2=a2+3ab.【题目点拨】本题主要考查了分式的乘除,单项式乘多项式以及完全平方公式的应用,要熟练掌握.20、(1)152-92=8×18,132-92=8×11;(2)任意两个奇数的平方差是8的倍数;(3)证明见解析.【分析】(1)根据算式的规律可见:左边是两个奇数的平方差,右边是8的倍数;可写出相同规律的算式;
(2)任意两个奇数的平方差是8的倍数;
(3)可设任意两个奇数为:2n+1,2m+1(其中n、m为整数)计算即可.【题目详解】解:(1)通过对老师和王华算式的观察,可以知道,左边是奇数的平方差,右边是8的倍数,
∴152-92=8×18,132-92=8×11,…;
(2)上述规律可用文字描述为:任意两个奇数的平方差等于8的倍数;
(3)证明:设m、n为整数,则任意两个奇数可表示为2m+1和2n+1,
∴(2m+1)2-(2n+1)2=(2m-2n)(2m+2n+2)=4(m-n)(m+n+1),
又∵①当m、n同奇数或同偶数时;m-n一定是偶数,设m-n=2a;
②m、n一奇数一偶数;m+n+1一定是偶数,设m+n+1=2a
∴(2m+1)2-(2n+1)2=8a(m+n+1),
而a(m+n+1)是整数,
∴任意两个奇数的平方差等于8的倍数成立.【题目点拨】本题考查了一个数学规律,即任意两个奇数的平方差等于8的倍数.通过本题的学习可见数字世界的奇妙变换,很有意义.21、(1)原方程无解;(2),5【分析】(1)先把方程两边同时乘以,转化为整式方程,求出整式方程的解,再将x的值代入最简公分母检验是否为原方程的解即可;(2)先将括号里的分式通分后分子相加,同时把前面的分式利用分式的乘法法则化简,再根据分式的减法法则化简得最简形式,最后将x的值代入计算即可.【题目详解】(1)解:两边同乘以得,解得检验:当时,=0,因此不是原方程的解,所以原方程无解.(2)解:原式===把代入得原式==5【题目点拨】本题考查了解分式方程及分式的化简求值,熟练掌握分式的运算法则是解决本题的关键,注意,解分式方程时一定要检验.22、(1)该商店第一次购进水果1千克;(2)每千克这种水果的标价至少是2元.【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于950元列出不等式,然后求解即可得出答案.【题目详解】(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得,解得x=1.经检验,x=1是所列方程的解.答:该商店第一次购进水果1千克.(2)设每千克这种水果的标价是y元,则(1+1×2﹣20)•y+20×0.5y≥10+2400+950,解得y≥2.答:每千克这种水果的标价至少是2元.【题目点拨】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.23、(1);(2)1.【分析】(1)先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四管管理制度
- 抢救与急救措施管理制度
- 利用导数解决不等式的恒成立问题
- 人教部编版四年级语文上册口语交际《讲历史人物故事》精美课件
- 【同步提优】部编版三语下第二单元各类阅读真题(含小古文、非连续性文本等)名师解析连载
- 福建省福州市三校联考2024年高三练习题五(全国卷)数学试题
- 2024年湖南客运资格证培训考试题答案解析
- 2024年河南客运考试应用能力试题答案解析
- 2024年重庆客运旅客急救考试答案
- 2024年河源小型客运从业资格证考试培训试题和答案
- 基于教、学、评一体化的初中英语写作教学实践以译林版《英语》九年级上册Unit
- 鱼塘所有权证明
- 医疗器械自查表【模板】
- 变频恒压供水设备安全操作规定
- 健康管理学教学大纲
- 公路施工安全技术交底资料(完整版)
- 《传感器原理与应用》教案
- 台湾歌仔戏的历史演变
- 《影视光线艺术与照明技巧》word版本
- 大柳塔煤矿井下移动设备管理办法
- 我家乡-湖北钟祥教学课件
评论
0/150
提交评论