版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省合阳城关中学2024届数学八上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若一个凸多边形的内角和为720°,则这个多边形的边数为A.4 B.5 C.6 D.72.函数的图象如图所示,则函数的大致图象是()A. B. C. D.3.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)4.下列坐标点在第四象限的是()A. B. C. D.5.阅读下列各式从左到右的变形你认为其中变形正确的有()A.3个 B.2个 C.1个 D.0个6.已知□ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.287.如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2
(1,-1),A3(0,0),则依图中所示规律,点A2019的横坐标为()A.1010 B. C.1008 D.8.庐江县自开展创建全省文明县城工作以来,广大市民掀起一股文明县城创建热潮,遵守交通法规成为市民的自觉行动,下面交通标志中是轴对称图形的是()A. B. C. D.
9.如图,直线,,,则的度数是()A. B. C. D.10.如图,在△ABC中,,∠D的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=_____.12.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为______.13.如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB交于点D,与AC交于点E,则∠BCD=___________度.14.若某个正数的两个平方根分别是与,则_______.15.等腰三角形的一个角是50°,则它的顶角等于°.16.如图,已知中,,的垂直平分线交于点,若,则的周长=__________.17.如图,在平面直角坐标系xOy中,点B(﹣1,3),点A(﹣5,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为_____.18.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.三、解答题(共66分)19.(10分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.20.(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(6分)已知的三边长均为整数,的周长为奇数.(1)若,,求AB的长.(2)若,求AB的最小值.22.(8分)阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子;(2)利用上面所提供的解法,请化简的值.23.(8分)如图(1)将长方形纸片ABCD的一边CD沿着CQ向下折叠,使点D落在边AB上的点P处.(1)试判断线段CQ与PD的关系,并说明理由;(2)如图(2),若AB=CD=5,AD=BC=1.求AQ的长;(1)如图(2),BC=1,取CQ的中点M,连接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△,请画出△并写出点的坐标;(2)请画出△ABC关于轴对称的△,并写出点的坐标.25.(10分)如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.26.(10分)为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76a=b=二班8.76c=d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【题目详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【题目点拨】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2、B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【题目详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,
∴a<0,b=2>0,
所以函数y=-ax-b的大致图象经过第一、四、三象限,
故选:B.【题目点拨】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.3、D【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【题目详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).
故选:D.【题目点拨】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4、D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【题目详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),
故选:D.【题目点拨】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.5、D【分析】根据分式的基本性质进行分析判断即可.【题目详解】由分式的基本性质可知:(1)等式中从左至右的变形是错误的;(2)等式中从左至右的变形是错误的;(3)等式中从左至右的变形是错误的;(4)等式中从左至右的变形是错误的.故上述4个等式从左至右的变形都是错的.故选D.【题目点拨】熟记“分式的基本性质:分式的分子和分母同时乘以(或除以)同一个值不为0的整式,分式的值不变.”是解答本题的关键.6、B【分析】根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【题目详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【题目点拨】此题主要考查平行四边形的性质7、D【解题分析】先观察图像找到规律,再求解.【题目详解】观察图形可以看出A1--A4;A5---A8;…每4个为一组,∵2019÷4=504…3∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,-2,-4,∴A2019的横坐标为-(2019-3)×=-1.∴A2019的横坐标为-1.故选:D.【题目点拨】本题考查的是点的坐标,正确找到规律是解题的关键.8、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【题目详解】解:如图C、能沿一条直线对折后两部分能完全重合,所以是轴对称图形;A、B、D选项中的图形,沿一条直线对折后两部分不能完全重合,所以不是轴对称图形;故选:C.【题目点拨】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.9、C【分析】根据平行线的性质,得,结合三角形内角和定理,即可得到答案.【题目详解】∵,∴,∵,∴=180°-32°-45°=103°,故选C.【题目点拨】本题主要考查平行线的性质定理以及三角形内角和定理,掌握两直线平行,同位角相等,是解题的关键.10、B【分析】先根据角的和差、三角形的内角和定理求出的度数,再根据三角形的内角和定理即可.【题目详解】由三角形的内角和定理得再由三角形的内角和定理得则故选:B.【题目点拨】本题考查了角的和差、三角形的内角和定理,熟记三角形的内角和定理是解题关键.二、填空题(每小题3分,共24分)11、45°或30°【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【题目详解】∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=∠CFD=22.5°,∠DEB=2x°,分类如下:①当DE=DB时,∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°;见图形(1),说明:图中AD应平分∠CAB.②当BD=BE时,则∠B=(180°﹣4x)°,由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.图形(2)说明:∠CAB=60°,∠CAD=22.5°.③DE=BE时,则∠B=(180﹣2x)°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+(180﹣2x)°,此方程无解.∴DE=BE不成立.综上所述,∠B=45°或30°.故答案为:45°或30°.【题目点拨】本题考查了翻折变换及等腰三角形的知识,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.12、5【分析】找到点E关于AD的对称点E’,根据对称得BF+EF=BE’,利用等边三角形三线合一性质证明AD=BE’即可求出结果.【题目详解】如下图,作点E关于AD的对称点E’,∵△ABC是等边三角形,E为AB的中点,∴E’是线段AC的中点,∴AD垂直平分EE’,EF=E’F即BF+EF=BE’,又∵D是BC中点,∴AD=BE’=5(等边三角形三线相等),【题目点拨】本题考查了等边三角形三线合一性质,图形对称的实际应用,中等难度,证明BF+EF=AD是解题关键.13、1【分析】根据直角三角形的性质可得∠ACB=55°,再利用线段垂直平分线的性质可得AD=CD,根据等边对等角可得∠A=∠ACD=35°,进而可得∠BCD的度数.【题目详解】∵∠A=35°,∠B=90°,∴∠ACB=55°,∵MN是线段AC的垂直平分线,∴AD=CD,∴∠A=∠ACD=35°,∴∠BCD=1°,故答案为:1.【题目点拨】此题主要考查了直角三角形的性质,以及线段垂直平分线的性质,关键是掌握在直角三角形中,两个锐角互余,线段垂直平分线上任意一点,到线段两端点的距离相等.14、1【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【题目详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【题目点拨】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15、50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【题目详解】(1)当50°为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=.故答案为:50°或.考点:等腰三角形的性质.16、1【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【题目详解】∵DE是AB的垂直平分线,
∴DA=DB,
∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=6+4=1,
故答案为:1.【题目点拨】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、(﹣2,﹣4)【分析】将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可【题目详解】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.设直线PB的解析式为y=kx+b,把B(﹣1,3),K(﹣,﹣)代入得,解得∵直线BK的解析式为y=7x+10,由,解得,∴点P坐标为(﹣2,﹣4),故答案为(﹣2,﹣4).【题目点拨】本题考查利用一次函数图像的几何变换求解交点的问题,解题的关键是要充分利用特殊角度45°角进行几何变换,求解直线BP的解析式.18、【解题分析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【题目详解】作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣),故答案为(,﹣).【题目点拨】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)1.【分析】(1)直接利用旋转的性质可得AP=AQ,∠PAQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC=∠APB=110°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【题目详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC==1.【题目点拨】本题考查了旋转的性质,等边三角形的性质与判定,全等三角形的判定与性质,勾股定理.证明△BAP≌△CAQ是解(1)的关键,证明∠PQC=90°是解(2)的关键.20、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【题目详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.21、(1)7或9;(2)1.【分析】(1)根据三角形的三边关系求出AB的取值范围,再由AB为奇数即可得出结论;(2)根据AC﹣BC=5可知AC、BC中一个奇数、一个偶数,再由△ABC的周长为奇数,可知AB为偶数,再根据AB>AC﹣BC即可得出AB的最小值.【题目详解】(1)∵由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴1<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC﹣BC=5,∴AB的最小值为1.【题目点拨】本题考查了三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.22、(1);(2)【分析】(1)观察题目中所给的运算方法级即可求解;(2)根据(1)的结论,化简各个二次根式后合并计算即可求解.【题目详解】(1)(2)【题目点拨】本题考查二次根式的分母有理化,熟练确定分母的有理化因式和合并同类二次根式是解决问题的关键.23、(3)CQ垂直平分DP见解析(2)(3)4【分析】(3)由折叠知CD=CP,∠DCQ=∠PCQ.根据等腰三角形三线合一的性质即可得出结论;(2)设AQ=x,则DQ=QP=3-x.在Rt△PBC中,由勾股定理可得PB的长,进而得到AP的长.在Rt△APQ中,由勾股定理列方程,求解即可得出结论.(3)由直角三角形斜边上的中线等于斜边的一半,得到DM=QM=MC=PM,由等腰三角形的性质得到∠MDQ=∠MQD,∠MQP=∠MPQ.再由四边形内角和为360°得到∠DQP=335°,从而得到∠AQP=25°,得到△APQ为等腰直角三角形,从而求出AQ的长.在Rt△PBC中,由勾股定理得到(AB-AQ)2+32=AB2,变形即可得到结论.【题目详解】(3)CQ垂直平分DP.理由如下:由折叠的性质可知:CD=CP,∠DCQ=∠PCQ,∴CQ垂直平分DP.(2)设AQ=x,则DQ=QP=3-x.∵PC=DC=5,BC=3,∴PB==2.∵AB=5,∴AP=5-2=3.在Rt△APQ中,∵,∴,解得:x=,∴AQ=.(3)如图,∵∠QDC=∠QPC=40°,M为斜边QC的中点,∴DM=QM=MC=PM,∴∠MDQ=∠MQD,∠MQP=∠MPQ.∵MD⊥PM,∴∠DMP=40°,∴∠DQP=∠DQM+∠PQM=(360°-40°)÷2=335°,∴∠AQP=380°-335°=25°.∵∠A=40°,∴∠APQ=∠AQP=25°,∴△APQ时等腰直角三角形,∴AP=AQ,DQ=PQ=AQ.∵AQ+QD=AD=BC=3,∴(+3)AQ=3,解得:AQ=3(-3)=.在Rt△PBC中,∵PB2+BC2=PC2,∴(AB-AQ)2+32=AB2,∴AB•AQ=(AQ2+4),∴AQ(AB+BC)=AQ•AB+AQ•BC=(AQ2+4)+3AQ=(AQ+3)2==4.【题目点拨】本题是四边形综合题.考查了折叠的性质、矩形的性质、勾股定理以及直角三角形的性质.得出∠AQP=25°是解答此题第(3)问的关键.24、(1)图详见解析,点的坐标(-2,-1);(2)图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年网络安全审查与评估合同
- 二零二五年度二手房交易合同:延期交房法律依据协议3篇
- 二零二五年个人体育用品购买借款合同3篇
- 机械原理课程设计车库门
- 2025版果壳箱环保技术研发与采购合同3篇
- 二零二五年度万科商铺租赁合同-包含商业活动及宣传推广3篇
- 玻璃抓取机械手课程设计
- 2025版高端咖啡机进口与国内销售合作协议3篇
- 江苏课程设计学分
- 2025年合成石墨合作协议书
- T∕CDHA 9-2022 热力管道安全评估方法
- 试验前准备状态检查报告
- 理正深基坑之钢板桩受力计算
- 根管治疗--ppt课件
- 国家开放大学电大专科《中国当代文学》期末试题及答案
- 广东话粤语姓名拼音大全
- 闸门及启闭机安装专项施工方案
- 应征公民体格检查表(征兵)
- 钢筋位置及保护层厚度检测ppt课件
- 岩石坚固性和稳定性分级表
- CNC程序控制管理办法
评论
0/150
提交评论