重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题含解析_第1页
重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题含解析_第2页
重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题含解析_第3页
重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题含解析_第4页
重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市涪陵区名校2024届八年级数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,折叠直角三角形纸片的直角,使点落在上的点处,已知,,则的长是()A.12 B.10 C.8 D.62.如图,,、分别是、的中点,则下列结论:①,②,③,④,其中正确有()A.个 B.个 C.个 D.个3.下列长度的三条线段,能构成直角三角形的是()A.8,9,10 B.1.5,5,2 C.6,8,10 D.20,21,324.下列给出的四组数中,不能构成直角三角形三边的一组是()A.3,4,5 B.5,12,13 C.1,2, D.6,8,95.在下列实数中,无理数是()A. B. C. D.6.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.47.如图,下列各式中正确的是()A. B.C. D.8.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B.C. D.9.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列等式成立的是()A. B.(a2)3=a6 C.a2.a3=a6 D.11.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.19212.下列各式,能写成两数和的平方的是()A. B. C. D.二、填空题(每题4分,共24分)13.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.,,,,14.直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.15.如图,在中,,,,分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,,过,两点作直线交于点,则的长是_______.16.将一次函数y=2x+2的图象向下平移2个单位长度,得到相应的函数表达式为____.17.如图,直线:,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;…,按此作法进行下去.点的坐标为__________.18.在中,,若,则________________度三、解答题(共78分)19.(8分)解二元一次方程组:20.(8分)如图,在平面直角坐标系中,三个顶点坐标分别为,,.(1)关于轴对称的图形(其中,,分别是,,的对称点),请写出点,,的坐标;(2)若直线过点,且直线轴,请在图中画出关于直线对称的图形(其中,,分别是,,的对称点,不写画法),并写出点,,的坐标;21.(8分)计算题(1)(2)22.(10分)如图,点A、D、B、E在一条直线上,AD=BE,∠C=∠F,BC∥EF.求证:(1)△ABC≌DEF;(2)AC∥DF23.(10分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.24.(10分)已知求的值;已知,求的值;已知,求的值.25.(12分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表;班级

平均数(分)

中位数(分)

众数(分)

九(1)

85

85

九(2)

80

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.26.如图,在平面直角坐标系中,直线与轴和轴分别交于点和点,与直线相交于点,,动点在线段和射线上运动.(1)求点和点的坐标.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在,求出此时点的坐标,若不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.【题目详解】:∵△ADE与△ADC关于AD对称,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C=90°,∴∠BED=90°,∵∠B=30°,∴BD=2DE,∵BC=BD+CD=36,∴36=2DE+DE,∴DE=12;故答案为:A.【题目点拨】本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.2、C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得,,再由45°角可证△ABQ为等腰直角三角形,从而可得可得,进而证明,利用三角形的全等性质求解即可.【题目详解】解:如图所示:连接,延长交于点,延长交于,延长交于.,,,,点为两条高的交点,为边上的高,即:,由中位线定理可得,,,故①正确;,,,,,,根据以上条件得,,,故②正确;,,,故③成立;无法证明,故④错误.综上所述:正确的是①②③,故选C.【题目点拨】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明.3、C【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【题目详解】A、由于82+92≠102,不能构成直角三角形,故本选项不符合题意;B、由于1.52+22≠52,不能构成直角三角形,故本选项不符合题意;C、由于62+82=102,能构成直角三角形,故本选项符合题意;D、由于202+212≠322,不能构成直角三角形,故本选项不符合题意;故选:C.【题目点拨】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、D【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【题目详解】A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122=132,∴能构成直角三角形三边;C.∵12+()2=22,∴能构成直角三角形三边;D.∵62+82≠92,∴不能构成直角三角形三边.故选:D.【题目点拨】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、B【解题分析】∵π是无限不循环小数,∴π是无理数,其它的数都是有理数.故选B.6、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【题目详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【题目点拨】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.7、D【解题分析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.8、A【分析】根据轴对称图形的概念求解.【题目详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.9、D【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.10、B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【题目详解】解:A、a0=1(a≠0),故此选项错误;

B、根据幂的乘方法则可得(a2)3=a6,正确;

C、根据同底数幂的乘法法则可得a2.a3=a5,故此选项错误;

D、根据积的乘方法则可得,故此选项错误;

故选:B.【题目点拨】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.11、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【题目详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【题目点拨】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.12、D【分析】直接利用完全平方公式判断得出答案.【题目详解】∵x2+1x+1=(x+2)2,∴能写成两数和的平方的是x2+1x+1.故选D.【题目点拨】本题考查了完全平方公式,掌握完全平方公式是解答本题的关键.二、填空题(每题4分,共24分)13、a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5【解题分析】(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,点睛:本题考查了完全平方公式的应用,解此题的关键是能读懂图形,先认真观察适中的特点,得出a的指数是从1到0,b的指数是从0到5,系数一次为1,﹣5,10,﹣10,5,﹣1,得出答案即可.14、1【解题分析】试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.试题解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为1,∴OA×OB+OA×OC=1,∴,解得:b1﹣b2=1.考点:两条直线相交或平行问题.15、【分析】连接AD,如图,先利用勾股定理计算出BC=8,利用基本作图得到PQ垂直平分AB,所以DA=DB,设CD=x,则DB=DA=8-x,利用勾股定理得到x2+62=(8-x)2,然后解方程即可.【题目详解】解:连接AD,如图,

∵∠C=90°,AC=3,AB=5,

∴BC==8,由作法得PQ垂直平分AB,

∴DA=DB,

设CD=x,则DB=DA=8-x,

在Rt△ACD中,x2+62=(8-x)2,解得x=,即CD的长为.故答案为:.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和勾股定理.16、y=2x【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【题目详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【题目点拨】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.17、(-22019,0)【分析】先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2020的坐标.【题目详解】解:∵点A1坐标为(-1,0),∴OA1=1,∵在中,当x=-1时,y=,即B1点的坐标为(-1,),∴由勾股定理可得OB1==2,即OA2=2,即点A2的坐标为(-2,0),即(-21,0),∴B2的坐标为(-2,),同理,点A3的坐标为(-4,0),即(-22,0),点B3的坐标为(-4,),以此类推便可得出:点A2020的坐标为(-22019,0).故答案为:(-22019,0).【题目点拨】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.18、1【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.【题目详解】∵∴∵∴故答案为:1.【题目点拨】本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.三、解答题(共78分)19、【分析】用加减消元法求解即可.【题目详解】解:,①+②得:,解得:,将代入①得:,∴方程组的解为:.【题目点拨】本题考查了解二元一次方程组,熟练掌握加减消元法与代入消元法是解题关键.20、(1),,;(2)图详见解析,,,【分析】(1)由题意利用作轴对称图形的方法技巧作图并写出点,,的坐标即可;(2)根据题意作出直线,并利用作轴对称图形的方法技巧画出关于直线对称的图形以及写出点,,的坐标即可.【题目详解】解,(1)作图如下:由图可知,,;(2)如图所示:由图可知为所求:,,.【题目点拨】本题考查轴对称变换,熟练掌握并利用关于y轴对称的点的坐标特点是解答此题的关键.21、(1)11;(2)【分析】(1)原式利用完全平方公式展开,合并即可得到答案;(2)原式利用多项式除以单项式法则计算即可得到结果.【题目详解】(1)(2)原式【题目点拨】本题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.22、(1)证明见解析;(2)证明见解析.【分析】(1)根据两直线平行,同位角相等,可求证∠CBA=∠FED,再根据线段和差关系证明AB=DE,然后利用AAS可判定△ABC≌△DEF.(2)利用全等三角形的性质可证得:∠A=∠EDF,然后根据同位角相等两直线平行可判定AC∥DF.【题目详解】(1)∵BC∥EF,∴∠CBA=∠FED,∵AD=BE,∴AB=DE,在△ABC和△DEF中,,∴△ABC≌△DEF,(2)∵△ABC≌△DEF,∴∠A=∠EDF,∴AC∥DF.23、(1)∠ECD=36°;(2)BC长是1.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【题目详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.【题目点拨】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24、(1);(2);(3).【分析】(1)根据同底数幂的乘法法则,将转换成,即可求出的值;(2)根据同底数幂的乘法法则,将转换成,即可求出的值;(3)利用完全平方公式将转换成,再代入求解即可.【题目详解】(1)∵∴解得(2)∵∴解得(3)将代入原式中原式.【题目点拨】本题考查了同底数幂和代数式的运算,掌握同底数幂的运算法则、解代数式的方法是解题的关键.25、(6)填表见解析.(6)九(6)班成绩好些;(6)70,6.【解题分析】试题分析:(6)分别计算九(6)班的平均分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论