山东省济南市重点中学2024届八年级数学第一学期期末预测试题含解析_第1页
山东省济南市重点中学2024届八年级数学第一学期期末预测试题含解析_第2页
山东省济南市重点中学2024届八年级数学第一学期期末预测试题含解析_第3页
山东省济南市重点中学2024届八年级数学第一学期期末预测试题含解析_第4页
山东省济南市重点中学2024届八年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市重点中学2024届八年级数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.真命题的逆命题都是真命题 B.无限小数都是无理数C.0.720精确到了百分位 D.的算术平方根是22.下列命题中,是真命题的是()A.0的平方根是它本身B.1的算术平方根是﹣1C.是最简二次根式D.有一个角等于60°的三角形是等边三角形3.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.4.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①② B.只有①②③ C.只有③④ D.①②③④6.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.27.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.8.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)9.在平面直角坐标系中,点A(3,1)关于原点对称的点的坐标是()A.(1,3) B.(﹣1,﹣3) C.(﹣3,﹣1) D.(﹣3,1)10.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18二、填空题(每小题3分,共24分)11.若分式的值为0,则x=_____.12.函数中,自变量的取值范围是.13.若,,且,则__________.14.要使分式有意义,则x的取值范围是_______________.15.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为___________.16.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是______元17.分式方程的解为_________.18.如图,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时间(小时)之间的关系,下列说法:①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米/小时;④乙先到达地.其中正确的是__________.(填序号)三、解答题(共66分)19.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)20.(6分)如图,中,,,垂足为,,,垂足分别是、.(1)求证:;(2)若,写出图中长度是的所有线段.21.(6分)如图,是边长为的等边三角形若点以的速度从点向点运动,到点停止运动;同时点以的速度从点向点运动,到点停止运动,(1)试求出运动到多少秒时,为等边三角形;(2)试求出运动到多少秒时,为直角三角形.22.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.23.(8分)2019年8月,第18届世界警察和消防员运动会在成都举行.我们在体育馆随机调查了部分市民当天的观赛时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)求抽查的市民观赛时间的众数、中位数;(3)求所有被调查市民的平均观赛时间.24.(8分)如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.25.(10分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.26.(10分)化简求值:,其中,满足.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据真命题的定义、无理数的判定、算术平方根、精确度等知识一一判断即可.【题目详解】A、真命题的逆命题不一定都是真命题,本选项不符合题意;B、无限小数都是无理数,错误,无限循环小数是无限小数,是有理数,本选项不符合题意;C、0.720精确到了千分位,本选项不符合题意;D、的算术平方根是2,正确;故选D.【题目点拨】本题考查真命题的定义、无理数的判定、算术平方根、精确度等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【分析】根据平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定逐一分析即可【题目详解】解:A、0的平方根是它本身,本选项说法是真命题;B、1的算术平方根是1,本选项说法是假命题;C、不是最简二次根式,本选项说法是假命题;D、有一个角等于60°的等腰三角形是等边三角形,本选项说法是假命题;故选:A.【题目点拨】本题考查了平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定,熟练掌握相关知识是解题的关键3、A【分析】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【题目详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.4、A【分析】先比较平均数,平均数相同时选择方差较小的运动员参加.【题目详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故选:A.【题目点拨】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.5、A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【题目详解】∵∠ACB=90°,∠ABC=30°,

∴∠BAC=60°,AC=AB,

∵△ACD是等边三角形,

∴∠ACD=60°,

∴∠ACD=∠BAC,

∴CD∥AB,

∵F为AB的中点,

∴BF=AB,

∴BF∥CD,CD=BF,

∴四边形BCDF为平行四边形,②正确;

∵四边形BCDF为平行四边形,

∴DF∥BC,又∠ACB=90°,

∴AC⊥DF,①正确;

∵DA=CA,DF=BC,AB=BE,BC+AC>AB

∴DA+DF>BE,③错误;

设AC=x,则AB=2x,

S△ACD=,④错误,

故选:A.【题目点拨】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.6、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【题目详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【题目点拨】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.7、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【题目详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【题目点拨】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.8、D【解题分析】因为∠DAM和∠CBM是直线AD和BC被直线AB的同位角,因为∠DAM=∠CBM根据同位角相等,两直线平行可得AD∥BC,所以D选项错误,故选D.9、C【分析】直接利用关于原点对称点的性质得出答案.【题目详解】解:∵关于原点对称的点的横、纵坐标均互为相反数,∴点A(3,1)关于原点对称的点的坐标是:(﹣3,﹣1).故选:C.【题目点拨】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.10、C【分析】只给出等腰三角形两条边长时,要对哪一条边是腰长进行分类讨论,再将不满足三角形三边关系的情况舍去,即可得出答案.【题目详解】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:;②当腰为3时,,三角形不成立;∴此等腰三角形的周长是1.故选:C.【题目点拨】本题主要考查等腰三角形的概念和三角形的三边关系,当等腰三角形腰长不确定时一定要分类讨论,得到具体的三条边长后要将不满足三边关系的答案舍去.二、填空题(每小题3分,共24分)11、-1【分析】根据分式值为零的条件计算即可;【题目详解】解:由分式的值为零的条件得x+1=0,x﹣2≠0,即x=﹣1且x≠2故答案为:﹣1.【题目点拨】本题主要考查了分式值为零的条件,准确计算是解题的关键.12、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【题目详解】依题意,得x-1≥0,

解得:x≥1.【题目点拨】本题考查的知识点为:二次根式的被开方数是非负数.13、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【题目详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【题目点拨】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.14、【解题分析】根据分式有意义的条件,则:解得:故答案为【题目点拨】分式有意义的条件:分母不为零.15、(2,-3).【解题分析】试题分析:根据平面直角坐标系中,关于x轴对称的点的坐标特征可知,点A(2,3)关于x轴的对称点坐标为(2,-3).考点:关于坐标轴对称的点的坐标特征.16、【解题分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【题目详解】11×60%+18×15%+24×25%=15.1(元),即该店当月销售出水果的平均价格是15.1元,故答案为15.1.【题目点拨】本题考查扇形统计图及加权平均数,熟练掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式是解题的关键.17、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【题目详解】去分母得:,

解得:,

经检验是分式方程的解.故答案为:.【题目点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18、:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【题目详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B地,相遇后乙还需8÷(12÷2)=小时到B地,∴乙先到达B地,故④正确;故答案为:①③④.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共66分)19、(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【题目详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【题目点拨】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.20、(1)见解析;(2)CF、BE【分析】(1)根据等腰三角形的对称性得到△ABD的面积和△ACD的面积相等,再根据面积公式求出DE=DF.(2)根据题意得出△ABC是等边三角形,即可得出Rt△DEB和Rt△DFC是30°特殊直角三角形,再根据性质求出线段关系即可.【题目详解】(1)∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,D为BC的中点.根据等腰三角形的性质可知S△ABD=S△ACD,即.∵AB=AC,∴DE=DF.(2)∵∠BAC=60°,AB=AC,∴△ABC是等边三角形.∴BC=AB=AC,∠B=∠C=∠BAC=60°,∴BD=CD=.∵DE⊥AB,DF⊥AC,∴∠BDE=∠CDEF=30°∴EB=,CF=.【题目点拨】本题考查等腰、等边三角形的性质,特殊直角三角形的性质,关键在于结合图形运用知识.21、(1)秒;(2)秒或1.5秒【分析】(1)设运动秒时,为等边三角形,根据列出关于t的方程求解即可;(2)设运动秒时,分或者两种情况列方程求解即可.【题目详解】(1)设运动秒时,为等边三角形∴∴当运动到秒时,为等边三角形.(2)∵为直角三角形.∴可能或者①当运动秒时,∵∴∴∴②当运动秒时,∵∴∴∴.综上所述,运动秒或1.5秒时,为直角三角形【题目点拨】本题考查了三角形的动点问题,解题的难点在于分类讨论的数学思想的运用,要做到不重不漏的分析问题的存在性.22、(1)11,10,78,81;(2)90人;(3)八年级的总体水平较好【解题分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【题目详解】解:(1)由题意知,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,1,79,79,80,80,81,83,85,86,87,94,∴其中位数,八年级成绩的众数,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).【题目点拨】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.23、(1)答案见解析;(2)众数是1.5小时,中位数是1.5小时;(3)1.32小时.【分析】(1)根据观赛时间为1小时的人数和所占的百分比可以求得本次调查的人数,从而可以得到观赛时间为1.5小时的人数,进而可以将条形统计图补充完整;

(2)根据(1)中条形统计图中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论